skip to main content
10.1145/2783258.2783360acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Discovering Valuable items from Massive Data

Published:10 August 2015Publication History

ABSTRACT

Suppose there is a large collection of items, each with an associated cost and an inherent utility that is revealed only once we commit to selecting it. Given a budget on the cumulative cost of the selected items, how can we pick a subset of maximal value? This task generalizes several important problems such as multi-arm bandits, active search and the knapsack problem. We present an algorithm, GP-SELECT, which utilizes prior knowledge about similarity between items, expressed as a kernel function. GP-SELECT uses Gaussian process prediction to balance exploration (estimating the unknown value of items) and exploitation (selecting items of high value). We extend GP-SELECT to be able to discover sets that simultaneously have high utility and are diverse. Our preference for diversity can be specified as an arbitrary monotone submodular function that quantifies the diminishing returns obtained when selecting similar items. Furthermore, we exploit the structure of the model updates to achieve an order of magnitude (up to 40X) speedup in our experiments without resorting to approximations. We provide strong guarantees on the performance of GP-SELECT and apply it to three real-world case studies of industrial relevance: (1) Refreshing a repository of prices in a Global Distribution System for the travel industry, (2) Identifying diverse, binding-affine peptides in a vaccine design task and (3) Maximizing clicks in a web-scale recommender system by recommending items to users.

Skip Supplemental Material Section

Supplemental Material

p1195.mp4

mp4

177.1 MB

References

  1. P. Auer, N. C. Bianchi, and P. Fischer. Finite-time Analysis of the Multiarmed Bandit Problem. Machine Learning, 47 (2--3): 235--256, May 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Badanidiyuru, R. Kleinberg, and A. Slivkins. Bandits with knapsacks. CoRR, abs/1305.2545, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. }Bubeck08S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári. Online optimization in X-armed bandits. In Advances in Neural Information Processing Systems (NIPS), 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. G. Choquet. Theory of capacities. Annales de l'institut Fourier, 5: 131--295, 1954.Google ScholarGoogle Scholar
  5. W. Chu, S.-T. Park, T. Beaupre, N. Motgi, A. adke, S. Chakraborty, and J. Zachariah. A case study of behavior-driven conjoint analysis on yahoo!: Front page today module. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '09, pages 1097--1104, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. V. Dani, T. P. Hayes, and S. Kakade. The price of bandit information for online optimization. In Advances in Neural Information Processing Systems (NIPS), 2007.Google ScholarGoogle Scholar
  7. T. Desautels, A. Krause, and J. Burdick. Parallelizing exploration-exploitation tradeoffs in gaussian process bandit optimization. Journal of Machine Learning Research (JMLR), 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. U. Feige. A threshold of ln n for approximating set cover. Journal of ACM, 45 (4): 634--652, July 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. R. Garnett, Y. Krishnamurthy, X. Xiong, J. Schneider, and R. Mann. Bayesian optimal active search and surveying. Proceredings of the 29th Annual International Conference on Machine Learning (ICML), 2012.Google ScholarGoogle Scholar
  10. A. Gupta, R. Krishnaswamy, M. Molinaro, and R. Ravi. Approximation algorithms for correlated knapsacks and non-martingale bandits. FOCS, pages 827--836, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: current status and future directions. Data Mining and Knowledge Discovery, 15 (1): 55--86, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. L. Jacob and J.-P. Vert. Efficient peptide-MHC-I binding prediction for alleles with few known binders. Bioinformatics, 24 (3): 358--366, Feb 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Kale, L. Reyzin, and R. E. Schapire. Non-stochastic bandit slate problems. In Advances in Neural Information Processing Systems (NIPS), pages 1054--1062, 2010.Google ScholarGoogle Scholar
  14. G. Kim, E. P. Xing, L. Fei-Fei, and T. Kanade. Distributed Cosegmentation via Submodular Optimization on Anisotropic Diffusion. 13th International Conference on Computer Vision (ICCV 2011), 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits in metric spaces. STOC, pages 681--690, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. Kleinberg, A. Niculescu-Mizil, and Y. Sharma. Regret bounds for sleeping experts and bandits. Machine Learning, 80 (2--3): 245--272, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Krause and C. S. Ong. Contextual gaussian process bandit optimization. In Advances in Neural Information Processing Systems (NIPS), 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Kulesza and B. Taskar. Determinantal point processes for machine learning. Machine Learning, 5 (2--3): 123--286, 2012.Google ScholarGoogle Scholar
  19. T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics, 6 (1): 4--22, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse gaussian process methods: The informative vector machine. NIPS, pages 609--616, 2002.Google ScholarGoogle Scholar
  21. L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news article recommendation. Proceedings of the 19th International Conference on World Wide Web, WWW '10, pages 661--670, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. H. Lin and J. Bilmes. A class of submodular functions for document summarization. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1, HLT '11, pages 510--520, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Minoux. Accelerated greedy algorithms for maximizing submodular set functions. Optimization Techniques, volume 7, pages 234--243. 1978.Google ScholarGoogle ScholarCross RefCross Ref
  24. G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maximizing submodular set functions-1. Mathematical Programming, 1978.Google ScholarGoogle Scholar
  25. B. Peters, H. Bui, S. Frankild, M. Nielsen, C. Lundegaard, E. Kostem, D. Basch, K. Lamberth, M. Harndahl, W. Fleri, S. Wilson, J. Sidney, O. Lund, S. Buus, and A. Sette. A Community Resource Benchmarking Predictions of Peptide Binding to MHC-I Molecules. PLoS Comput Biol, 2 (6), June 2006.Google ScholarGoogle Scholar
  26. C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005. ISBN 026218253X. Google ScholarGoogle ScholarCross RefCross Ref
  27. opf and Smola(2001)}Scholkopf01B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001. ISBN 0262194759. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. B. Settles. Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Slivkins, F. Radlinski, and S. Gollapudi. Learning optimally diverse rankings over large document collections. International Conference on Machine Learning(ICML), pages 983--990, 2010.Google ScholarGoogle Scholar
  30. N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Information-theoretic regret bounds for gaussian process optimization in the bandit setting. IEEE Transactions on Information Theory, 58 (5): 3250--3265, May 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. Streeter and D. Golovin. An online algorithm for maximizing submodular functions. Advances in Neural Information Processing Systems 21, pages 1577--1584. 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. M. Streeter, D. Golovin, and A. Krause. Online learning of assignments. In Advances in Neural Information Processing Systems (NIPS), 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. L. Tran-Thanh, A. C. Chapman, E. M. de Cote, A. Rogers, and N. R. Jennings. Epsilon-first policies for budget-limited multi-armed bandits. AAAI, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. H. P. Vanchinathan, I. Nikolic, F. De Bona, and A. Krause. Explore-exploit in top-n recommender systems via gaussian processes. Proceedings of the 8th ACM Conference on Recommender systems, pages 225--232. ACM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. t al.(2015)Vanchinathan, Marfurt, Robelin, Kossmann, and Krause}Vanchinathan15ArxivH. P. Vanchinathan, A. Marfurt, C.-A. Robelin, D. Kossmann, and A. Krause. Discovering Valuable Items from Massive Data. ArXiv e-prints, June 2015. URL http://arxiv.org/abs/1506.00935.Google ScholarGoogle Scholar
  36. Wang, Garnett, and Schneider}Wang13aX. Wang, R. Garnett, and J. G. Schneider. Active search on graphs. KDD, pages 731--738, 2013\natexlaba. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wang, Zoghi, Hutter, Matheson, and De Freitas}Wang13Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. De Freitas. Bayesian optimization in high dimensions via random embeddings. Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, pages 1778--1784, 2013\natexlabb. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. M. K. Warmuth, J. Liao, G. Rätsch, M. Mathieson, S. Putta, and C. Lemmen. Support vector machines for active learning in the drug discovery process. Journal of Chemical Information Sciences, 43: 667--673, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  39. C. Widmer, N. Toussaint, Y. Altun, and G. Ratsch. Inferring latent task structure for Multitask Learning by Multiple Kernel Learning. BMC Bioinformatics, 11 (Suppl 8): S5Google ScholarGoogle Scholar
  40. , 2010.Google ScholarGoogle Scholar
  41. Y. Yue and C. Guestrin. Linear submodular bandits and their application to diversified retrieval. In Advances in Neural Information Processing Systems (NIPS), Granada, Spain, December 2011.Google ScholarGoogle Scholar

Index Terms

  1. Discovering Valuable items from Massive Data

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        KDD '15: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
        August 2015
        2378 pages
        ISBN:9781450336642
        DOI:10.1145/2783258

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 10 August 2015

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        KDD '15 Paper Acceptance Rate160of819submissions,20%Overall Acceptance Rate1,133of8,635submissions,13%

        Upcoming Conference

        KDD '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader