skip to main content
10.1145/2783258.2788624acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Learning a Hierarchical Monitoring System for Detecting and Diagnosing Service Issues

Published:10 August 2015Publication History

ABSTRACT

We propose a machine learning based framework for building a hierarchical monitoring system to detect and diagnose service issues. We demonstrate its use for building a monitoring system for a distributed data storage and computing service consisting of tens of thousands of machines. Our solution has been deployed in production as an end-to-end system, starting from telemetry data collection from individual machines, to a visualization tool for service operators to examine the detection outputs. Evaluation results are presented on detecting 19 customer impacting issues in the past three months.

Skip Supplemental Material Section

Supplemental Material

p2029.mp4

mp4

288.1 MB

References

  1. N. Begum and E. J. Keogh. Rare time series motif discovery from unbounded streams. PVLDB, 8(2):149--160, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. P. Bodík, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen. Fingerprinting the datacenter: automated classification of performance crises. In EuroSys 2010, pages 111--124, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: Identifying density-based local outliers. SIGMOD Rec., 29(2):93--104, May 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection for discrete sequences: A survey. IEEE Trans. Knowl. Data Eng., 24(5):823--839, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. H. Chen, G. Jiang, and K. Yoshihira. Failure detection in large-scale internet services by principal subspace mapping. IEEE Trans. Knowl. Data Eng., 19(10):1308--1320, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Y. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. A. Brewer. Failure diagnosis using decision trees. In ICAC, pages 36--43, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315:972--976, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  8. Q. Fu, J. Lou, Q. Lin, R. Ding, D. Zhang, Z. Ye, and T. Xie. Performance issue diagnosis for online service systems. In SRDS, pages 273--278, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Q. Fu, J. Lou, Y. Wang, and J. Li. Execution anomaly detection in distributed systems through unstructured log analysis. In ICDM, pages 149--158, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Gabel, R. Glad-Bachrach, N. Bjorner, and A. Schuster. Latent fault detection in cloud services. Technical Report Technical Report, Microsoft Research, 2011.Google ScholarGoogle Scholar
  11. A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample test. in JMLR, 13(1):723--773, Mar. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S.-S. Ho and H. Wechsler. A martingale framework for detecting changes in data streams by testing exchangeability. IEEE PAMI, 32(12):2113--2127, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. Lin, R. Raghu, V. Ramamurthy, J. Yu, R. Radhakrishnan, and J. Fernandez. Unveiling clusters of events for alert and incident management in large-scale enterprise it. In KDD, pages 1630--1639, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li. Mining invariants from console logs for system problem detection. In USENIX, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. Lou, Q. Lin, R. Ding, Q. Fu, D. Zhang, and T. Xie. Software analytics for incident management of online services: An experience report. In IEEE/ACM ASE, 2013.Google ScholarGoogle Scholar
  16. C. Luo, J. Lou, Q. Lin, Q. Fu, R. Ding, D. Zhang, and Z. Wang. Correlating events with time series for incident diagnosis. In KDD, pages 1583--1592, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. N. Meinshausen and P. Buhlmann. High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, 34(3):1436--1462, June 2006.Google ScholarGoogle ScholarCross RefCross Ref
  18. A. Mueen. Time series motif discovery: dimensions and applications. Data Mining and Knowledge Discovery, 4(2):152--159, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. H. Qiu, Y. Liu, N. A. Subrahmanya, and W. Li. Granger causality for time-series anomaly detection. In ICDM, pages 1074--1079, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. S. Roy, A. C. Koíg, I. Dvorkin, and M. Kumar. Perfaugur: Robust diagnostics for performance anomalies in cloud services. In ICDE, 2015, 2015.Google ScholarGoogle Scholar
  21. B. Scholkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a high-dimensional distribution. Neural Computation, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. L. Tang and T. Li. Logtree: A framework for generating system events from raw textual logs. In ICDM, pages 491--500, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (Series B), 58:267--288, 1996.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Learning a Hierarchical Monitoring System for Detecting and Diagnosing Service Issues

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      KDD '15: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
      August 2015
      2378 pages
      ISBN:9781450336642
      DOI:10.1145/2783258

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 10 August 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      KDD '15 Paper Acceptance Rate160of819submissions,20%Overall Acceptance Rate1,133of8,635submissions,13%

      Upcoming Conference

      KDD '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader