skip to main content
10.1145/2786572.2788710acmconferencesArticle/Chapter ViewAbstractPublication PagesnocsConference Proceedingsconference-collections
research-article

Networking Challenges and Prospective Impact of Broadcast-Oriented Wireless Networks-on-Chip

Published: 28 September 2015 Publication History

Abstract

The cost of broadcast has been constraining the design of manycore processors and of the algorithms that run upon them. However, as on-chip RF technologies allow the design of small-footprint and high-bandwidth antennas and transceivers, native low-latency (a few clock cycles) and low-power (a few pJ/bit) broadcast support through wireless communication can be envisaged. In this paper, we analyze the main networking design aspects and challenges of Broadcast-oriented Wireless Network-on-Chip (BoWNoC), which are basically reduced to the development of Medium Access Control (MAC) protocols able to handle hundreds of cores. We evaluate the broadcast performance and scalability of different MAC designs, to then discuss the impact that the proposed paradigm could exert on the performance, scalability and programmability of future manycore architectures, programming models and parallel algorithms.

References

[1]
S. Abadal, E. Alarcón, M. C. Lemme, M. Nemirovsky, and A. Cabellos-Aparicio. Graphene-enabled Wireless Communication for Massive Multicore Architectures. IEEE Communications Magazine, 51(11):137--143, 2013.
[2]
S. Abadal, M. Iannazzo, M. Nemirovsky, A. Cabellos-aparicio, and E. Alarcón. On the Area and Energy Scalability of Wireless Network-on-Chip: A Model-based Benchmarked Design Space Exploration. IEEE /ACM Transactions on Networking, 23(5):1, 2015.
[3]
S. Abadal, R. Martínez, E. Alarcón, and A. Cabellos-Aparicio. Multicast On-Chip Traffic Analysis Targeting Manycore NoC Design. In Proceedings of the PDP '14, pages 370--378, 2014.
[4]
J. L. Abellán, J. Fernández, and M. E. Acacio. Efficient Hardware Barrier Synchronization in Many-Core CMPs. IEEE Transactions on Parallel and Distributed Systems, 23(8):1453--1466, 2012.
[5]
N. Abeyratne, R. Das, Q. Li, K. Sewell, B. Giridhar, R. G. Dreslinski, D. Blaauw, and T. Mudge. Scaling towards kilo-core processors with asymmetric high-radix topologies. In Proceedings of the HPCA '13, pages 496--507. Ieee, Feb. 2013.
[6]
C. Batten, A. Joshi, V. Stojanovic, and K. Asanovic. Designing Chip-Level Nanophotonic Interconnection Networks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2(2):137--153, 2012.
[7]
D. Bertozzi, G. Dimitrakopoulos, J. Flich, and S. Sonntag. The fast evolving landscape of on-chip communication. Design Automation for Embedded Systems, Apr. 2014.
[8]
J. Chan, G. Hendry, A. Biberman, K. Bergman, and L. P. Carloni. PhoenixSim: A Simulator for Physical-Layer Analysis of Chip-Scale Photonic Interconnection Networks. In Proceedings of DATE '10, pages 691--696, 2010.
[9]
B. Daya, C.-H. O. Chen, S. Subramanian, W.-C. Kwon, S. Park, T. Krishna, J. Holt, A. P. Chandrakasan, and L.-S. Peh. SCORPIO: a 36-core research chip demonstrating snoopy coherence on a scalable mesh NoC with in-network ordering. In Proceedings of the ISCA-41, pages 25--36, 2014.
[10]
S. Deb, A. Ganguly, P. P. Pande, B. Belzer, and D. Heo. Wireless NoC as Interconnection Backbone for Multicore Chips: Promises and Challenges. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2(2):228--239, 2012.
[11]
D. DiTomaso, A. Kodi, D. Matolak, S. Kaya, S. Laha, and W. Rayess. A-WiNoC : Adaptive Wireless Network-on-Chip Architecture for Chip Multiprocessors. IEEE Transactions on Parallel and Distributed Systems, PP(99), 2014.
[12]
K. Duraisamy, R. G. Kim, and P. P. Pande. Enhancing Performance of Wireless NoCs with Distributed MAC Protocols. In Proceedings of the ISQED '15, pages 406--411, 2015.
[13]
A. Ganguly, K. Chang, S. Deb, P. P. Pande, B. Belzer, and C. Teuscher. Scalable Hybrid Wireless Network-on-Chip Architectures for Multi-Core Systems. IEEE Transactions on Computers, 60(10):1485--1502, 2010.
[14]
J. Hennessy and D. Patterson. Computer architecture: a quantitative approach. Morgan Kaufmann, 2012.
[15]
D. Hou, Y. Z. Xiong, W. Hong, W. L. Goh, and J. Chen. Silicon-based on-chip antenna design for millimeter-wave/THz applications. In Proceedings of the EDAPS '11, pages 1--4, 2011.
[16]
N. E. Jerger, L.-S. Peh, and M. Lipasti. Virtual Circuit Tree Multicasting: A Case for On-Chip Hardware Multicast Support. In Proceedings of the ISCA-35, pages 229--240. Ieee, June 2008.
[17]
A. J. Karkar, J. E. Turner, K. Tong, R. Al-Dujaily, T. Mak, A. Yakovlev, and F. Xia. Hybrid wire-surface wave interconnects for next-generation networks-on-chip. IET Computers & Digital Techniques, 7(6):294--303, Nov. 2013.
[18]
U. R. Karpuzcu, A. Sinkar, N. S. Kim, and J. Torrellas. EnergySmart: Toward energy-efficient manycores for Near-Threshold Computing. In Proceedings of the ISCA '13, pages 542--553, 2013.
[19]
J. Kim and K. Choi. Exploiting New Interconnect Technologies in On-Chip Communication. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2(2):124--136, 2012.
[20]
T. Krishna, C. Chen, W. Kwon, and L. Peh. Smart: Single-Cycle Multihop Traversals over a Shared Network on Chip. IEEE Micro, 34(3):43--56, 2014.
[21]
T. Krishna, L. Peh, B. Beckmann, and S. K. Reinhardt. Towards the ideal on-chip fabric for 1-to-many and many-to-1 communication. In Proceedings of the MICRO-44, pages 71--82, 2011.
[22]
T. Krishna and L.-S. Peh. Single-Cycle Collective Communication Over A Shared Network Fabric. In Proceedings of the NoCS '14, pages 1--8, 2014.
[23]
G. Kurian, J. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L. Kimerling, and A. Agarwal. ATAC: A 1000-Core Cache-Coherent Processor with On-Chip Optical Network. In Proceedings of the PACT, pages 477--488. ACM, 2010.
[24]
S. Laha, S. Kaya, D. W. Matolak, W. Rayess, D. DiTomaso, and A. Kodi. A New Frontier in Ultralow Power Wireless Links: Network-on-Chip and Chip-to-Chip Interconnects. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(2):186--198, 2015.
[25]
S.-B. Lee, S.-W. Tam, I. Pefkianakis, S. Lu, M.-C. F. Chang, C. Guo, G. Reinman, C. Peng, M. Naik, L. Zhang, and J. Cong. A scalable micro wireless interconnect structure for CMPs. In Proceedings of the MOBICOM '09, page 217, 2009.
[26]
W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Networking, 2(1):1--15, 1994.
[27]
R. Manevich, I. Walter, I. Cidon, and A. Kolodny. Best of both worlds: A bus enhanced NoC (BENoC). In Proceedings of the NoCS '09, pages 173--182, 2009.
[28]
N. Mansoor and A. Ganguly. Reconfigurable Wireless Network-on-Chip with a Dynamic Medium Access Mechanism. In Proceedings of the NoCS '15, 2015.
[29]
O. Markish, B. Sheinman, O. Katz., D. Corcos, and D. Elad. On-chip mmWave Antennas and Transceivers. In Proceedings of the NoCS '15, 2015.
[30]
M. Martin. Token Coherence: decoupling performance and correctness. In Proceedings of the ISCA-30, pages 182--193, 2003.
[31]
D. Matolak, A. Kodi, S. Kaya, D. DiTomaso, S. Laha, and W. Rayess. Wireless networks-on-chips: architecture, wireless channel, and devices. IEEE Wireless Communications, 19(5), 2012.
[32]
U. Ogras and R. Marculescu. "It's a small world after all": NoC performance optimization via long-range link insertion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(7):693--706, July 2006.
[33]
J. Oh, M. Prvulovic, and A. Zajic. TLSync: support for multiple fast barriers using on-chip transmission lines. In Proceedings of ISCA-38, pages 105--115, 2011.
[34]
J. Oh, A. Zajic, and M. Prvulovic. Traffic steering between a low-latency unswitched TL ring and a high-throughput switched on-chip interconnect. In Proceedings of the PACT '13, pages 309--318, 2013.
[35]
S. Park, T. Krishna, C.-H. Chen, B. Daya, A. Chandrakasan, and L.-S. Peh. Approaching the theoretical limits of a mesh NoC with a 16-node chip prototype in 45nm SOI. In Proceedings of the DAC 2012, page 398. ACM Press, 2012.
[36]
J. Psota, J. Miller, G. Kurian, H. Hoffman, N. Beckmann, J. Eastep, and A. Agarwal. ATAC : Improving Performance and Programmability with On-Chip Optical Networks. In Proceedings of the ISCAS '10, pages 3325--3328, 2010.
[37]
A. Ros, M. E. Acacio, and J. M. García. Cache Coherence Protocols for Many-Core CMPs. In Parallel and Distributing Computing, pages 93--118. 2010.
[38]
D. Sanchez, G. Michelogiannakis, and C. Kozyrakis. An Analysis of On-Chip Interconnection Networks for Large-Scale Chip Multiprocessors. ACM Transactions on Architecture and Code Optimization, 7(1), 2010.
[39]
E. Seok, D. Shim, C. Mao, R. Han, S. Sankaran, C. Cao, W. Knap, and K. K. O. Progress and challenges towards terahertz CMOS integrated circuits. IEEE Journal of Solid-State Circuits, 45(8):1554--1564, 2010.
[40]
V. Soteriou, H. Wang, and L. Peh. A Statistical Traffic Model for On-Chip Interconnection Networks. In Proceedings of MASCOTS '06, pages 104--116, 2006.
[41]
D. Vantrease, M. H. Lipasti, and N. Binkert. Atomic Coherence: Leveraging nanophotonics to build race-free cache coherence protocols. In Proceedings of the HPCA '11, pages 132--143. Ieee, Feb. 2011.
[42]
D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. Jouppi, M. Fiorentino, A. Davis, N. Binkert, R. Beausoleil, and J. Ahn. Corona: System implications of emerging nanophotonic technology. ACM SIGARCH Computer Architecture News, 36(3):153--164, 2008.
[43]
J. Vetter and A. Yoo. An Empirical Performance Evaluation of Scalable Scientific Applications. In Proceedings of the SC '02, pages 1--16, 2002.
[44]
Y. Wu, K. a. Jenkins, A. Valdes-Garcia, D. B. Farmer, Y. Zhu, A. a. Bol, C. Dimitrakopoulos, W. Zhu, F. Xia, P. Avouris, and Y.-M. Lin. State-of-the-art graphene high-frequency electronics. Nano letters, 12(6):3062--7, June 2012.
[45]
X. Yu, J. Baylon, P. Wettin, D. Heo, P. Pande, and S. Mirabbasi. Architecture and Design of Multi-Channel Millimeter-Wave Wireless Network-on-Chip. IEEE Design & Test, 31(6):19--28, 2014.

Cited By

View all
  • (2025)Preamble Design and Noncoherent ToA Estimation for Pulse-Based Wireless Networks-on-Chip Communications in the Terahertz BandMicromachines10.3390/mi1601007016:1(70)Online publication date: 8-Jan-2025
  • (2023)Proactive flow control using adaptive beam forming for smart intra-layer data communication in wireless network on chipAutomatika10.1080/00051144.2023.221392764:4(689-702)Online publication date: 25-May-2023
  • (2021)A Centralized Token-based Medium Access Control Mechanism for Wireless Network-on-Chip2021 International Conference on Artificial Intelligence and Computer Science Technology (ICAICST)10.1109/ICAICST53116.2021.9497802(102-107)Online publication date: 29-Jun-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
NOCS '15: Proceedings of the 9th International Symposium on Networks-on-Chip
September 2015
233 pages
ISBN:9781450333962
DOI:10.1145/2786572
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 September 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Broadcast
  2. MAC Protocols
  3. Manycore Processors
  4. Multicast
  5. Network-on-Chip
  6. Wireless On-Chip Communication

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

Conference

NOCS '15
NOCS '15: International Symposium on Networks-on-Chip
September 28 - 30, 2015
BC, Vancouver, Canada

Acceptance Rates

Overall Acceptance Rate 14 of 44 submissions, 32%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Preamble Design and Noncoherent ToA Estimation for Pulse-Based Wireless Networks-on-Chip Communications in the Terahertz BandMicromachines10.3390/mi1601007016:1(70)Online publication date: 8-Jan-2025
  • (2023)Proactive flow control using adaptive beam forming for smart intra-layer data communication in wireless network on chipAutomatika10.1080/00051144.2023.221392764:4(689-702)Online publication date: 25-May-2023
  • (2021)A Centralized Token-based Medium Access Control Mechanism for Wireless Network-on-Chip2021 International Conference on Artificial Intelligence and Computer Science Technology (ICAICST)10.1109/ICAICST53116.2021.9497802(102-107)Online publication date: 29-Jun-2021
  • (2019)BARANACM Transactions on Parallel Computing10.1145/32940495:3(1-29)Online publication date: 22-Jan-2019
  • (2018)Design of Wireless Network on Chip with Priority-Based MACJournal of Circuits, Systems and Computers10.1142/S021812661950124X(1950124)Online publication date: 6-Aug-2018
  • (2016)A Demand-Aware Predictive Dynamic Bandwidth Allocation Mechanism for Wireless Network-on-ChipProceedings of the 18th System Level Interconnect Prediction Workshop10.1145/2947357.2947361(1-8)Online publication date: 4-Jun-2016
  • (2015)Reconfigurable Wireless Network-on-Chip with a Dynamic Medium Access MechanismProceedings of the 9th International Symposium on Networks-on-Chip10.1145/2786572.2788711(1-8)Online publication date: 28-Sep-2015

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media