skip to main content
10.1145/2789168.2790103acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

Rethinking Energy-Performance Trade-Off in Mobile Web Page Loading

Authors Info & Claims
Published:07 September 2015Publication History

ABSTRACT

Web browsing is a key application on mobile devices. However, mobile browsers are largely optimized for performance, imposing a significant burden on power-hungry mobile devices. In this work, we aim to reduce the energy consumed to load web pages on smartphones, preferably without increasing page load time and compromising user experience. To this end, we first study the internals of web page loading on smartphones and identify its energy-inefficient behaviors. Based on our findings, we then derive general design principles for energy-efficient web page loading, and apply these principles to the open-source Chromium browser and implement our techniques on commercial smartphones. Experimental results show that our techniques are able to achieve a 24.4% average system energy saving for Chromium on a latest-generation big.LITTLE smartphone using WiFi (a 22.5% saving when using 3G), while not increasing average page load time. We also show that our proposed techniques can bring a 10.5% system energy saving on average with a small 1.69\% increase in page load time for mobile Firefox web browser. User study results indicate that such a small increase in page load time is hardly perceivable.

References

  1. 3G/4G wireless network latency: Comparing Verizon, AT&T, Sprint and T-Mobile in February 2014.Google ScholarGoogle Scholar
  2. Alexa, Top Sites in United States. http://www.alexa.com/topsites/countries/US.Google ScholarGoogle Scholar
  3. ARM big.LITTLE technology. http://www.thinkbiglittle.com.Google ScholarGoogle Scholar
  4. Blink. http://www.chromium.org/blink.Google ScholarGoogle Scholar
  5. Content module. http://www.chromium.org/developers/content-module.Google ScholarGoogle Scholar
  6. Differences between Google Chrome and Linux distro Chromium. http://code.google.com/p/chromium/wiki/ChromiumBrowserVsGoogleChrome.Google ScholarGoogle Scholar
  7. The dummynet project. http://info.iet.unipi.it/\ luigi/dummynet.Google ScholarGoogle Scholar
  8. Hypertext transfer protocol version 2.0, draft-ietf-httpbis-http2-07. http://tools.ietf.org/html/draft-ietf-httpbis-http2-07.Google ScholarGoogle Scholar
  9. SPDY. http://www.chromium.org/spdy.Google ScholarGoogle Scholar
  10. Speed index. http://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index.Google ScholarGoogle Scholar
  11. Telemetry. http://www.chromium.org/developers/telemetry.Google ScholarGoogle Scholar
  12. Visual progress - dev tools. http://www.webpagetest.org/forums/showthread.php?tid=12216.Google ScholarGoogle Scholar
  13. Web Page Replay. http://www.github.com/chromium/web-page-replay.Google ScholarGoogle Scholar
  14. WebKit. http://www.webkit.org.Google ScholarGoogle Scholar
  15. M. Butkiewicz, H. V. Madhyastha, and V. Sekar. Understanding Website Complexity: Measurements, Metrics, and Implications. In Proc. ACM IMC, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Carroll and G. Heiser. Mobile multicores: Use them or waste them. In Proc. USENIX HotPower, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Carroll and G. Heiser. Unifying DVFS and offlining in mobile multicores. In Proc. IEEE RTAS, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  18. H. Chung, M. Kang, and H. D. Cho. Heterogeneous Multi-Processing Solution of Exynos 5 Octa with ARM big.LITTLE Technology, 2012.Google ScholarGoogle Scholar
  19. A. Cunningham. New Opera for Android looks like Opera, tastes like Chrome. http://arstechnica.com/information-technology/2013/05/new-opera-for-android-looks-like-opera-tastes-like-chrome.Google ScholarGoogle Scholar
  20. M. Dong and L. Zhong. Chameleon: A Color-adaptive Web Browser for Mobile OLED Displays. In Proc. ACM MobiSys, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Dong and L. Zhong. Chameleon: A Color-Adaptive Web Browser for Mobile OLED Displays. IEEE Transactions on Mobile Computing (TMC), 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Dutton. Measuring Page Load Speed with Navigation Timing. http://www.html5rocks.com/en/tutorials/webperformance/basics, 2011.Google ScholarGoogle Scholar
  23. J. Glauner. Analyzing Website Performance at a Glance. http://www.stratigent.com/community/analytics-insights-blog/analyzing-website-performance-glance, 2013.Google ScholarGoogle Scholar
  24. U. Gundecha. Selenium Testing Tools Cookbook. Packt Publishing, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Q. He, C. Dovrolis, and M. Ammar. On the predictability of large transfer TCP throughput. In Proc. ACM SIGCOMM, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. Huang. Performance and Power Characterization of Cellular Networks and Mobile Application Optimizations. PhD thesis, The University of Michigan, 2013.Google ScholarGoogle Scholar
  27. J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl. Anatomizing application performance differences on smartphones. In Proc. ACM MobiSys, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. B. Iglewicz and D. Hoaglin. Volume 16: How to Detect and Handle Outliers. 1993.Google ScholarGoogle Scholar
  29. Monsoon Solutions Inc. Monsoon power monitor. http://www.msoon.com/LabEquipment/PowerMonitor.Google ScholarGoogle Scholar
  30. Y. Ma, X. Liu, S. Zhang, R. Xiang, Y. Liu, and T. Xie. Measurement and Analysis of Mobile Web Cache Performance. In Proc. WWW, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. L. A. Meyerovich and R. Bodik. Fast and parallel webpage layout. In Proc. WWW, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. M. Mirza, J. Sommers, P. Barford, and Xiaojin Zhu. A machine learning approach to TCP throughput prediction. Networking, IEEE/ACM Transactions on, 18(4):1026--1039, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. K. W. Nixon, X. Chen, H. Zhou, Y. Liu, and Y. Chen. Mobile gpu power consumption reduction via dynamic resolution and frame rate scaling. In HotPower, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. A. Pathak, Y. C. Hu, and M. Zhang. Where is the Energy Spent Inside My App?: Fine Grained Energy Accounting on Smartphones with Eprof. In Proc. ACM EuroSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. F. Qian, S. Sen, and O. Spatscheck. Characterizing Resource Usage for Mobile Web Browsing. In Proc. ACM MobiSys, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. Characterizing Radio Resource Allocation for 3G Networks. In Proc. ACM IMC, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Rasmussen. sched: Task placement for heterogeneous MP systems. http://www.lwn.net/Articles/517250, 2012.Google ScholarGoogle Scholar
  38. R. Schoen. Wicked Fast (Performance investments). In Chrome Dev Summit, 2014.Google ScholarGoogle Scholar
  39. B. Shneiderman, C. Plaisant, M. Cohen, and S. Jacobs. Designing the User Interface: Strategies for Effective Human-Computer Interaction. Fifth edition, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. J. Sommers and P. Barford. Cell vs. wifi: On the performance of metro area mobile connections. In Proc. ACM IMC, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P. Singh. Who Killed My Battery?: Analyzing Mobile Browser Energy Consumption. In Proc. WWW, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall. How Speedy is SPDY? In Proc. USENIX NSDI, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. How Far Can Client-only Solutions Go for Mobile Browser Speed? In Proc. WWW, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin, Y. Zhang, and Q. Li. Optimizing Background Email Sync on Smartphones. In Proc. ACM MobiSys, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. B. Zhao, Q. Zheng, G. Cao, and S. Addepalli. Energy-Aware Web Browsing in 3G Based Smartphones. In Proc. IEEE ICDCS, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Y. Zhu and V. J. Reddi. High-performance and Energy-efficient Mobile Web Browsing on Big/Little Systems. In Proc. IEEE HPCA, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Rethinking Energy-Performance Trade-Off in Mobile Web Page Loading

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      MobiCom '15: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking
      September 2015
      638 pages
      ISBN:9781450336192
      DOI:10.1145/2789168

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 September 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      MobiCom '15 Paper Acceptance Rate38of207submissions,18%Overall Acceptance Rate440of2,972submissions,15%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    ePub

    View this article in ePub.

    View ePub