skip to main content
10.1145/2789168.2790124acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

Precise Power Delay Profiling with Commodity WiFi

Authors Info & Claims
Published:07 September 2015Publication History

ABSTRACT

Power delay profiles characterize multipath channel features, which are widely used in motion- or localization-based applications. Recent studies show that the power delay profile may be derived from the CSI traces collected from commodity WiFi devices, but the performance is limited by two dominating factors. The resolution of the derived power delay profile is determined by the channel bandwidth, which is however limited on commodity WiFi. The collected CSI reflects the signal distortions due to both the channel attenuation and the hardware imperfection. A direct derivation of power delay profiles using raw CSI measures, as has been done in the literature, results in significant inaccuracy. In this paper, we present Splicer, a software-based system that derives high-resolution power delay profiles by splicing the CSI measurements from multiple WiFi frequency bands. We propose a set of key techniques to separate the mixed hardware errors from the collected CSI measurements. Splicer adapts its computations within stringent channel coherence time and thus can perform well in presence of mobility. Our experiments with commodity WiFi NICs show that Splicer substantially improves the accuracy in profiling multipath characteristics, reducing the errors of multipath distance estimation to be less than $2m$. Splicer can immediately benefit upper-layer applications. Our case study with recent single-AP localization achieves a median localization error of $0.95m$.

References

  1. F. Adib, Z. Kabelac, D. Katabi, and R. C. Miller. 3d tracking via body radio reflections. In Proc. of USENIX NSDI, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Azzalini. A class of distributions which includes the normal ones. Scandinavian journal of statistics, 1985.Google ScholarGoogle Scholar
  3. R. Crepaldi, J. Lee, R. Etkin, S.-J. Lee, and R. Kravets. CSI-SF: Estimating wireless channel state using CSI sampling and fusion. In Proc. of IEEE INFOCOM, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  4. T. Felhauer, P. Baier, W. Konig, and W. Mohr. Optimum spread spectrum signals for wideband channel sounding. Electronics Letters, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  5. Y. Gao, W. Dong, C. Chen, J. Bu, T. Chen, M. Xia, X. Liu, and X. Xu. Domo: passive per-packet delay tomography in wireless ad-hoc networks. In Proc. of IEEE ICDCS, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. Gjengset, G. McPhillips, and K. Jamieson. Arrayphaser: Enabling signal processing on WiFi access points. Proc. of ACM MobiCom, 2014.Google ScholarGoogle Scholar
  7. A. Goldsmith. Wireless communications. Cambridge university press, 2005. Google ScholarGoogle ScholarCross RefCross Ref
  8. D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Predictable 802.11 packet delivery from wireless channel measurements. In Proc. of ACM SIGCOMM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. C. Han, K. Wu, Y. Wang, and L. Ni. WiFall: Device-free fall detection by wireless networks. In Proc. of IEEE INFOCOM, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  10. J. Han, C. Qian, X. Wang, D. Ma, J. Zhao, P. Zhang, W. Xi, and Z. Jiang. Twins: Device-free object tracking using passive tags. In Proc. of IEEE INFOCOM, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  11. L. He, L. Fu, L. Zheng, Y. Gu, P. Cheng, J. Chen, and J. Pan. Esync: An energy synchronized charging protocol for rechargeable wireless sensor networks. In Proc. of ACM MobiHoc, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. IEEE Standard for Information Technology--Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer Specifications, Mar. 2012.Google ScholarGoogle Scholar
  13. S. Jana and S. K. Kasera. On fast and accurate detection of unauthorized wireless access points using clock skews. In Proc. of ACM MobiCom, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. V. Jimenez, M. Fernandez-Getino Garcia, F. Serrano, and A. Armada. Design and implementation of synchronization and agc for ofdm-based wlan receivers. IEEE Transactions on Consumer Electronics, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. B. Kempke, P. Pannuto, and P. Dutta. Harmonia: Wideband spreading for accurate indoor rf localization. In Proc. of ACM HotWireless, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Khalid, Y. Wang, I. Butun, H.-j. Kim, I.-h. Ra, and R. Sankar. Coherence time-based cooperative mac protocol 1 for wireless ad hoc networks. In EURASIP Journal on Wireless Communications and Networking, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  17. H. Liu, Y. Gan, J. Yang, S. Sidhom, Y. Wang, Y. Chen, and F. Ye. Push the limit of wifi based localization for smartphones. In Proc. of ACM MobiCom, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Q. Ma, K. Liu, X. Xiao, Z. Cao, and Y. Liu. Link scanner: Faulty link detection for wireless sensor networks. In Proc. of IEEE INFOCOM, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  19. A. T. Mariakakis, S. Sen, J. Lee, and K.-H. Kim. SAIL: Single access point-based indoor localization. In Proc. of ACM MobiSys, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Molina, P. Fannin, and J. Timoney. Generation of optimum excitation waveforms for mobile radio channel sounding. IEEE Transactions on Vehicular Technology, 1995.Google ScholarGoogle Scholar
  21. D. Molkdar and P. Matthews. Measurements and characterization of the UHF mobile radio channel. part 1: Measurements over the band 853--885 MHz. Electronic and Radio Engineers, Journal of the Institution of, 1988.Google ScholarGoogle Scholar
  22. K. Pahlavan and A. H. Levesque. Wireless information networks. John Wiley & Sons, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. Parsons, D. Demery, and A. Turkmani. Sounding techniques for wideband mobile radio channels: a review. Communications, Speech and Vision, IEE Proceedings I, 1991.Google ScholarGoogle Scholar
  24. Q. Pu, S. Gupta, S. Gollakota, and S. Patel. Whole-home gesture recognition using wireless signals. In Proc. of ACM MobiCom, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. H. S. Rahul, S. Kumar, and D. Katabi. Jmb: Scaling wireless capacity with user demands. In Proc. of ACM SIGCOMM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. T. S. Rappaport et al. Wireless communications: principles and practice. prentice hall PTR New Jersey, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Sen, R. R. Choudhury, and S. Nelakuditi. Spinloc: Spin once to know your location. In Proc. of ACM HotMobile, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Sen, J. Lee, K.-H. Kim, and P. Congdon. Avoiding multipath to revive inbuilding WiFi localization. In Proc. of ACM MobiSys, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. Sen, B. Radunovic, R. R. Choudhury, and T. Minka. You are facing the mona lisa: Spot localization using PHY layer information. In Proc. of ACM MobiSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. L. Shangguan, Z. Yang, A. X. Liu, Z. Zhou, and Y. Liu. Relative localization of rfid tags using spatial-temporal phase profiling. In Proc. of USENIX NSDI, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. Speth, S. Fechtel, G. Fock, and H. Meyr. Optimum receiver design for wireless broad-band systems using OFDM. i. IEEE Transactions on Communications, 1999.Google ScholarGoogle Scholar
  32. J. K. Tan. An adaptive orthogonal frequency division multiplexing baseband modem for wideband wireless channels. Master's thesis, Massachusetts Institute of Technology, 2006.Google ScholarGoogle Scholar
  33. G. Wang, Y. Zou, Z. Zhou, K. Wu, and L. M. Ni. We can hear you with Wi-Fi! In Proc. of ACM MobiCom, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. L. Wang, Y. He, Y. Liu, W. Liu, J. Wang, and N. Jing. It is not just a matter of time: oscillation-free emergency navigation with sensor networks. In Proc. of IEEE RTSS, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu. E-eyes: Device-free location-oriented activity identification using fine-grained WiFi signatures. In Proc. of ACM MobiCom, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. C. Wu, Z. Yang, Z. Zhou, K. Qian, Y. Liu, and M. Liu. Phaseu: Real-time LOS identification with wifi. In Proc. of IEEE INFOCOM, 2014.Google ScholarGoogle Scholar
  37. K. Wu, J. Xiao, Y. Yi, M. Gao, and L. Ni. FILA: Fine-grained indoor localization. In Proc. of IEEE INFOCOM, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  38. W. Xi, J. Zhao, X.-Y. Li, K. Zhao, S. Tang, X. Liu, and Z. Jiang. Electronic frog eye: Counting crowd using WiFi. In Proc. of IEEE INFOCOM, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  39. J. Xiao, K. Wu, Y. Yi, and L. Ni. FIFS: Fine-grained indoor fingerprinting system. In Proc. of IEEE ICCCN, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  40. J. Xiong and K. Jamieson. Arraytrack: A fine-grained indoor location system. In Proc. of USENIX NSDI, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. Xiong, K. Jamieson, and K. Sundaresan. Synchronicity: Pushing the envelope of fine-grained localization with distributed mimo. In Proc. of ACM HotWireless, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. J. Xiong, K. Sundaresan, and K. Jamieson. Tonetrack: Overcoming bandwidth constraints for indoor wireless localization. In Proc. of ACM MobiCom, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu. Tagoram: Real-time tracking of mobile rfid tags to high precision using cots devices. In Proc. of ACM MobiCom, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. L. Yang, J. Han, Y. Qi, C. Wang, T. Gu, and Y. Liu. Season: Shelving interference and joint identification in large-scale rfid systems. In Proc. of IEEE INFOCOM, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  45. L. Zhang, K. Liu, Y. Jiang, X.-Y. Li, Y. Liu, and P. Yang. Montage: Combine frames with movement continuity for realtime multi-user tracking. In Proc. of IEEE INFOCOM, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  46. Z. Zhou, Z. Yang, C. Wu, L. Shangguan, and Y. Liu. Omnidirectional coverage for device-free passive human detection. IEEE Transactions on Parallel and Distributed Systems, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Precise Power Delay Profiling with Commodity WiFi

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          MobiCom '15: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking
          September 2015
          638 pages
          ISBN:9781450336192
          DOI:10.1145/2789168

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 September 2015

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          MobiCom '15 Paper Acceptance Rate38of207submissions,18%Overall Acceptance Rate440of2,972submissions,15%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        ePub

        View this article in ePub.

        View ePub