skip to main content
research-article

Non-manifold level sets: a multivalued implicit surface representation with applications to self-collision processing

Published:02 November 2015Publication History
Skip Abstract Section

Abstract

Level sets have been established as highly versatile implicit surface representations, with widespread use in graphics applications including modeling and dynamic simulation. Nevertheless, level sets are often presumed to be limited, compared to explicit meshes, in their ability to represent domains with thin topological features (e.g. narrow slits and gaps) or, even worse, material overlap. Geometries with such features may arise from modeling tools that tolerate occasional self-intersections, fracture modeling algorithms that create narrow or zero-width cuts by design, or as transient states in collision processing pipelines for deformable objects. Converting such models to level sets can alter their topology if thin features are not resolved by the grid size. We argue that this ostensible limitation is not an inherent defect of the implicit surface concept, but a collateral consequence of the standard Cartesian lattice used to store the level set values. We propose storing signed distance values on a regular hexahedral mesh which can have multiple collocated cubic elements and non-manifold bifurcation to accommodate non-trivial topology. We show how such non-manifold level sets can be systematically generated from convenient alternative geometric representations. Finally we demonstrate how this representation can facilitate fast and robust treatment of self-collision in simulations of volumetric elastic deformable bodies.

Skip Supplemental Material Section

Supplemental Material

References

  1. Adalsteinsson, D., and Sethian, J. A. 1994. A fast level set method for propagating interfaces. JCP 118, 269--277. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baraff, D., Witkin, A., and Kass, M. 2003. Untangling cloth. ACM Trans. Graph. 22, 3, 862--870. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bloomenthal, J., and Ferguson, K. 1995. Polygonization of non-manifold implicit surfaces. SIGGRAPH '95, 309--316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3, 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. SCA '03, 28--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chentanez, N., and Müller, M. 2011. Real-time eulerian water simulation using a restricted tall cell grid. SIGGRAPH '11, 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Da, F., Batty, C., and Grinspun, E. 2014. Multimaterial mesh-based surface tracking. ACM TOG 33, 4, 112:1--112:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. 21, 3, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Faure, F., Barbier, S., Allard, J., and Falipou, F. 2008. Image-based collision detection and response between arbitrary volume objects. SCA '08, 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gascuel, M.-P. 1993. An implicit formulation for precise contact modeling between flexible solids. In SIGGRAPH '93, 313--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Nonconvex rigid bodies with stacking. ACM TOG 22, 3, 871--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hellrung, J., Selle, A., Shek, A., Sifakis, E., and Teran, J. 2009. Geometric fracture modeling in bolt. In SIGGRAPH 2009: Talks, SIGGRAPH '09, 7:1--7:1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Houston, B., Nielsen, M. B., Batty, C., Nilsson, O., and Museth, K. 2006. Hierarchical RLE level set: A compact and versatile deformable surface representation. ACM Trans. Graph. 25, 1, 151--175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Irving, G., Guendelman, E., Losasso, F., and Fedkiw, R. 2006. Efficient simulation of large bodies of water by coupling two and three dimensional techniques. SIGGRAPH, 805--811. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., and Gross, M. 2009. Enrichment textures for detailed cutting of shells. ACM Trans. Graph. 28, 3, 50:1--50:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kobbelt, L. P., Botsch, M., Schwanecke, U., and Seidel, H.-P. 2001. Feature sensitive surface extraction from volume data. SIGGRAPH '01, 57--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Labelle, F., and Shewchuk, J. 2007. Isosurface stuffing: Fast tetrahedral meshes with good dihedral angles. ACM TOG 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. SIGGRAPH '04, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM TOG 25, 3, 812--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30, 4, 37:1--37:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Moës, N., Dolbow, J., and Belytschko, T. 1999. A finite element method for crack growth without remeshing. IJNME 46, 131--150.Google ScholarGoogle ScholarCross RefCross Ref
  22. Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23, 3, 385--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Muller, M., Teschner, M., and Gross, M. 2004. Physically-based simulation of objects represented by surface meshes. CGI '04, 26--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Museth, K., Breen, D., Whitaker, R., and Barr, A. 2002. Level set surface editing operators. In ACM TOG, 330--338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Museth, K. 2011. DB+Grid: A novel dynamic blocked grid for sparse high-resolution volumes and level sets. SIGGRAPH '11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Museth, K. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM Trans. Graph. 32, 3 (July), 27:1--27:22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 3, 52:1--52:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nielsen, M. B., and Museth, K. 2006. Dynamic tubular grid: An efficient data structure and algorithms for high resolution level sets. J. Sci. Comput. 26, 3 (Mar.), 261--299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Osher, S., and Fedkiw, R. 2002. Level Set Methods and Dynamic Implicit Surfaces. Springer.Google ScholarGoogle Scholar
  30. Osher, S., and Sethian, J. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Rivers, A., and James, D. 2007. FastLSM: Fast lattice shape matching for robust real-time deformation. ACM TOG 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sacht, L., Jacobson, A., Panozzo, D., Schüller, C., and Sorkine-Hornung, O. 2013. Consistent volumetric discretizations inside self-intersecting surfaces. Computer Graphics Forum 32, 5, 147--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Setaluri, R., Aanjaneya, M., Bauer, S., and Sifakis, E. 2014. SPGrid: A sparse paged grid structure applied to adaptive smoke simulation. ACM Trans. Graph. 33, 6, 205:1--205:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sethian, J. A. 1998. Fast marching methods. SIAM Review 41, 199--235. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sifakis, E., and Barbic, J. 2012. Fem simulation of 3d deformable solids: A practitioner's guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012 Courses, SIGGRAPH '12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sifakis, E., Der, K. G., and Fedkiw, R. 2007. Arbitrary cutting of deformable tetrahedralized objects. SCA '07, 73--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Teran, J., Sifakis, E., Blemker, S. S., Ng-Thow-Hing, V., Lau, C., and Fedkiw, R. 2005. Creating and simulating skeletal muscle from the visible human data set. IEEE Transactions on Visualization and Computer Graphics 11, 3, 317--328. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005. Robust quasistatic finite elements and flesh simulation. SCA '05, 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Vaillant, R., Barthe, L., Guennebaud, G., Cani, M.-P., Rohmer, D., Wyvill, B., Gourmel, O., and Paulin, M. 2013. Implicit skinning: Real-time skin deformation with contact modeling. ACM Trans. Graph. 32, 4, 125:1--125:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Vaillant, R., Guennebaud, G., Barthe, L., Wyvill, B., and Cani, M.-P. 2014. Robust iso-surface tracking for interactive character skinning. ACM TOG 33, 6, 189:1--189:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wang, B., Faure, F., and Pai, D. K. 2012. Adaptive image-based intersection volume. ACM Trans. Graph. 31, 4, 97:1--97:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Yuan, Z., Yu, Y., and Wang, W. 2012. Object-space multi-phase implicit functions. ACM TOG 31, 4, 114:1--114:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Zhao, H.-K., Osher, S., and Fedkiw, R. 2001. Fast surface reconstruction using the level set method. VLSM '01, 194--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Zheng, W., Yong, J.-H., and Paul, J.-C. 2006. Simulation of bubbles. SCA '06, 325--333. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Non-manifold level sets: a multivalued implicit surface representation with applications to self-collision processing

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 34, Issue 6
          November 2015
          944 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2816795
          Issue’s Table of Contents

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 November 2015
          Published in tog Volume 34, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader