skip to main content
10.1145/2828612.2828623acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

Loosely Coupled In Situ Visualization: A Perspective on Why It's Here to Stay

Published: 15 November 2015 Publication History

Abstract

In this position paper, we argue that the loosely coupled in situ processing paradigm will play an important role in high performance computing for the foreseeable future. Loosely coupled in situ is an enabling technique that addresses many of the current issues with tightly coupled in situ, including, ease-of-integration, usability, and fault tolerance. We survey the prominent positives and negatives of both tightly coupled and loosely coupled in situ and present our recommendation as to why loosely coupled in situ is an enabling technique that is here to stay. We then report on some recent experiences with loosely coupled in situ processing, in an effort to explore each of the discussed factors in a real-world environment.

References

[1]
S. Ahern, A. Shoshani, K.-L. Ma, A. Choudhary, T. Critchlow, S. Klasky, V. Pascucci, J. Ahrens, E. Bethel, H. Childs, et al. Scientific discovery at the exascale. Report from the DOE ASCR 2011 Workshop on Exascale Data Management, 2011.
[2]
J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin, S. Klasky, H. Kolla, M. Parashar, V. Pascucci, et al. Combining in-situ and in-transit processing to enable extreme-scale scientific analysis. In High Performance Computing, Networking, Storage and Analysis (SC), 2012 International Conference for, pages 1--9. IEEE, 2012.
[3]
C. Chang, S. Ku, P. Diamond, Z. Lin, S. Parker, T. Hahm, and N. Samatova. Compressed ion temperature gradient turbulence in diverted tokamak edgea). Physics of Plasmas (1994-present), 16(5):056108, 2009.
[4]
H. Childs, M. Kwan-Liu, Y. Hongfeng, W. Brad, M. Jeremy, F. Jean, K. Scott, P. Norbert, S. Karsten, W. Matthew, P. Manish, and Z. Fan. In situ processing. In E. W. Bethel, H. Childs, and C. Hansen, editors, High Performance Visualization: Enabling Extreme-Scale Scientific Insight. CRC Press, Boca Raton, FL, 2012.
[5]
H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, Prabhat, G. H. Weber, and E. W. Bethel. Extreme scaling of production visualization software on diverse architectures. IEEE Comput. Graph. Appl., 30(3):22--31, May 2010.
[6]
H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, Prabhat, G. H. Weber, and E. W. Bethel. Visualization at extreme scale concurrency. In E. W. Bethel, H. Childs, and C. Hansen, editors, High Performance Visualization: Enabling Extreme-Scale Scientific Insight. CRC Press, Boca Raton, FL, 2012.
[7]
C. Docan, M. Parashar, and S. Klasky. Dataspaces: an interaction and coordination framework for coupled simulation workflows. Cluster Computing, 15(2):163--181, 2012.
[8]
C. Docan, F. Zhang, T. Jin, H. Bui, Q. Sun, J. Cummings, N. Podhorszki, S. Klasky, and M. Parashar. Activespaces: Exploring dynamic code deployment for extreme scale data processing. Concurrency and Computation: Practice and Experience, pages 1--22, 2014.
[9]
N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion, B. Geveci, M. Rasquin, and K. Jansen. The paraview coprocessing library: A scalable, general purpose in situ visualization library. In Large Data Analysis and Visualization (LDAV), 2011 IEEE Symposium on, pages 89--96. IEEE, 2011.
[10]
Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi, S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, M. Parashar, N. Samatova, K. Schwan, A. Shoshani, M. Wolf, K. Wu, and W. Yu. Hello adios: the challenges and lessons of developing leadership class i/o frameworks. Concurrency and Computation: Practice and Experience, 26(7):1453--1473, 2014.
[11]
L.-t. Lo, C. Sewell, and J. P. Ahrens. Piston: A portable cross-platform framework for data-parallel visualization operators. In EGPGV, pages 11--20, 2012.
[12]
J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin. Flexible io and integration for scientific codes through the adaptable io system (adios). In Proceedings of the 6th international workshop on Challenges of large applications in distributed environments, CLADE '08, pages 15--24, New York, NY, USA, 2008. ACM.
[13]
J. S. Meredith, S. Ahern, D. Pugmire, and R. Sisneros. EAVL: the extreme-scale analysis and visualization library. In Eurographics Symposium on Parallel Graphics and Visualization, pages 21--30. The Eurographics Association, 2012.
[14]
J. S. Meredith, R. Sisneros, D. Pugmire, and S. Ahern. A distributed data-parallel framework for analysis and visualization algorithm development. In Proceedings of the 5th Annual Workshop on General Purpose Processing with Graphics Processing Units, GPGPU-5, pages 11--19, New York, NY, USA, 2012. ACM.
[15]
K. Moreland, U. Ayachit, B. Geveci, and K.-L. Ma. Dax toolkit: A proposed framework for data analysis and visualization at extreme scale. In Large Data Analysis and Visualization (LDAV), 2011 IEEE Symposium on, pages 97--104, Oct 2011.
[16]
K. Moreland, R. Oldfield, P. Marion, S. Jourdain, N. Podhorszki, V. Vishwanath, N. Fabian, C. Docan, M. Parashar, M. Hereld, et al. Examples of in transit visualization. In Proceedings of the 2nd international workshop on Petascale data analytics: challenges and opportunities, pages 1--6. ACM, 2011.
[17]
D. Pugmire, J. Kress, J. Meredith, N. Podhorszki, J. Choi, and S. Klasky. Towards scalable visualization plugins for data staging workflows. In Big Data Analytics: Challenges and Opportunities (BDAC-14) Workshop at Supercomputing Conference, November 2014.
[18]
C. Sewell, J. Meredith, K. Moreland, T. Peterka, D. DeMarle, L.-t. Lo, J. Ahrens, R. Maynard, and B. Geveci. The sdav software frameworks for visualization and analysis on next-generation multi-core and many-core architectures. In High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion:, pages 206--214. IEEE, 2012.
[19]
V. Vishwanath, M. Hereld, and M. Papka. Toward simulation-time data analysis and i/o acceleration on leadership-class systems. In Large Data Analysis and Visualization (LDAV), 2011 IEEE Symposium on, pages 9--14, 2011.
[20]
B. Whitlock, J. M. Favre, and J. S. Meredith. Parallel in situ coupling of simulation with a fully featured visualization system. In Proceedings of the 11th Eurographics conference on Parallel Graphics and Visualization, pages 101--109. Eurographics Association, 2011.

Cited By

View all
  • (2024)Dual Channel Dual Staging: Hierarchical and Portable Staging for GPU-Based In-Situ Workflow2024 IEEE 31st International Conference on High Performance Computing, Data, and Analytics (HiPC)10.1109/HiPC62374.2024.00027(188-198)Online publication date: 18-Dec-2024
  • (2023)Inshimtu – A Lightweight In Situ Visualization “Shim”High Performance Computing10.1007/978-3-031-40843-4_19(257-268)Online publication date: 25-Aug-2023
  • (2023)Optimizing Data Movement for GPU-Based In-Situ Workflow Using GPUDirect RDMAEuro-Par 2023: Parallel Processing10.1007/978-3-031-39698-4_22(323-338)Online publication date: 24-Aug-2023
  • Show More Cited By

Index Terms

  1. Loosely Coupled In Situ Visualization: A Perspective on Why It's Here to Stay

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      ISAV2015: Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization
      November 2015
      51 pages
      ISBN:9781450340038
      DOI:10.1145/2828612
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 15 November 2015

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. In situ
      2. Loosely coupled in situ
      3. Scientific visualization
      4. Tightly coupled in situ
      5. Visualization techniques and methodologies
      6. perspective

      Qualifiers

      • Research-article
      • Research
      • Refereed limited

      Funding Sources

      • Scientific Data Management, Analysis, and Visualization

      Conference

      SC15

      Acceptance Rates

      ISAV2015 Paper Acceptance Rate 8 of 19 submissions, 42%;
      Overall Acceptance Rate 23 of 63 submissions, 37%

      Upcoming Conference

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)7
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 05 Mar 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Dual Channel Dual Staging: Hierarchical and Portable Staging for GPU-Based In-Situ Workflow2024 IEEE 31st International Conference on High Performance Computing, Data, and Analytics (HiPC)10.1109/HiPC62374.2024.00027(188-198)Online publication date: 18-Dec-2024
      • (2023)Inshimtu – A Lightweight In Situ Visualization “Shim”High Performance Computing10.1007/978-3-031-40843-4_19(257-268)Online publication date: 25-Aug-2023
      • (2023)Optimizing Data Movement for GPU-Based In-Situ Workflow Using GPUDirect RDMAEuro-Par 2023: Parallel Processing10.1007/978-3-031-39698-4_22(323-338)Online publication date: 24-Aug-2023
      • (2022)Research Perspectives Toward Autonomic Optimization of In Situ Analysis and Visualization2022 IEEE/ACM International Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV)10.1109/ISAV56555.2022.00007(7-13)Online publication date: Nov-2022
      • (2022)A Simulation-Oblivious Data Transport Model for Flexible In Transit VisualizationIn Situ Visualization for Computational Science10.1007/978-3-030-81627-8_18(399-419)Online publication date: 5-May-2022
      • (2022)The Adaptable IO System (ADIOS)In Situ Visualization for Computational Science10.1007/978-3-030-81627-8_11(233-254)Online publication date: 5-May-2022
      • (2022)Multi-physics Multi-scale HPC Simulations of Skeletal MusclesHigh Performance Computing in Science and Engineering '2010.1007/978-3-030-80602-6_13(185-203)Online publication date: 1-Jan-2022
      • (2020)The Challenges of In Situ Analysis for Multiple SimulationsISAV'20 In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization10.1145/3426462.3426468(32-37)Online publication date: 12-Nov-2020
      • (2020)Opportunities for Cost Savings with In-Transit VisualizationHigh Performance Computing10.1007/978-3-030-50743-5_8(146-165)Online publication date: 22-Jun-2020
      • (2020)Adaptive and Efficient Transfer for Online Remote Visualization of Critical Weather ApplicationsComputational Science – ICCS 202010.1007/978-3-030-50417-5_50(674-693)Online publication date: 15-Jun-2020
      • Show More Cited By

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media