skip to main content
10.1145/2833312.2833453acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicdcnConference Proceedingsconference-collections
research-article

Scaling architecture-on-demand based optical networks

Published:04 January 2016Publication History

ABSTRACT

This paper analyzes methodologies that allow scaling properly Architecture-On-Demand (AoD) based optical networks. As Data Centers and HPC systems are growing in size and complexity, optical networks seem to be the way to scale the bandwidth of current network infrastructures. To scale the number of servers that are connected to optical switches normally Dense Wavelength Division Multiplexing (DWDM) is used to group several servers in one fiber. Using DWDM limits the number of servers per fiber to the number of wavelengths that fiber supports, and also may increase the number of packet collisions. Our proposal focuses on using Time Division Multiplexing (TDM) to allow multiple servers per wavelength, allowing to scale to a larger number of servers per switch. Initial results have shown that when using TDM we can obtain similar results in performance when comparing it with DWDM. For some of the applications, TDM can outperform DWDM up to 2.4% taking into account execution time.

References

  1. N. Amaya, G. Zervas, and D. Simeonidou. Architecture on demand for transparent optical networks. In Transparent Optical Networks (ICTON), 2011 13th International Conference on, pages 1--4, June 2011.Google ScholarGoogle ScholarCross RefCross Ref
  2. D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The nas parallel benchmarks; summary and preliminary results. In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, Supercomputing '91, pages 158--165, New York, NY, USA, 1991. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Bazavov, C. Bernard, C. DeTar, J. Foley, W. Freeman, S. Gottlieb, U. M. Heller, J. Hetrick, J. Laiho, L. Levkova, J. Osborn, R. Sugar, D. Toussaint, R. van de Water, and R. Zhou. MIMD Lattice Computation (MILC) Collaboration. http://www.physics.indiana.edu/~sg/milc.html, 2015.Google ScholarGoogle Scholar
  4. G. C. de Verdière. Hydrobench. https://github.com/HydroBench/Hydro, 2014.Google ScholarGoogle Scholar
  5. N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat. Helios: a hybrid electrical/optical switch architecture for modular data centers. SIGCOMM Comput. Commun. Rev., 41(4):--, Aug. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. R. Hemenway, R. Grzybowski, C. Minkenberg, and R. Luijten. Optical-packet-switched interconnect for supercomputer applications. J. Opt. Netw., 3(12):900--913, Dec 2004.Google ScholarGoogle ScholarCross RefCross Ref
  7. M. A. Heroux. Mantevo home page. https://mantevo.org/, 2008.Google ScholarGoogle Scholar
  8. U. Hoelzle and L. A. Barroso. The Datacenter As a Computer: An Introduction to the Design of Warehouse-Scale Machines. Morgan and Claypool Publishers, 1st edition, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. C. Kachris and I. Tomkos. A survey on optical interconnects for data centers. Communications Surveys Tutorials, IEEE, 14(4):1021--1036, Fourth 2012.Google ScholarGoogle ScholarCross RefCross Ref
  10. O. Liboiron-Ladouceur, A. Shacham, B. Small, B. Lee, H. Wang, C. Lai, A. Biberman, and K. Bergman. The data vortex optical packet switched interconnection network. Lightwave Technology, Journal of, 26(13):1777--1789, July 2008.Google ScholarGoogle Scholar
  11. S. D. Lucente, J. Luo, R. P. Centelles, A. Rohit, S. Zou, K. A. Williams, H. J. S. Dorren, and N. Calabretta. Numerical and experimental study of a high port-density wdm optical packet switch architecture for data centers. Optical Express, 21(1):263--269, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  12. J. Luo, S. D. Lucente, J. Ramirez, H. J. S. Dorren, and N. Calabretta. Low latency and large port count optical packet switch with highly distributed control. In Proceedings of the Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2012), 2012.Google ScholarGoogle ScholarCross RefCross Ref
  13. H. Meyer, J. C. Sancho, W. Miao, H. Dorren, N. Calabretta, and M. Farreras". Performance evaluation of Optical Packet Switches on High Performance Applications. In W. W. Smari, editor, Proceedings of the 2015 International Conference on High Performance Computing & Simulation (HPCS 2015), pages 356--363. IEEE Computer Society, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  14. W. Miao, S. D. Lucente, J. Luo, H. Dorren, and N. Calabretta. Low latency and efficient optical flow control for intra data center networks. In Proceedings of the European Conference and Exhibition on Optical Communication, Optical Society of America, Optical Society of America, 2013.Google ScholarGoogle Scholar
  15. W. Miao, J. Luo, S. Lucente, H. J. S. Dorren, and N. Calabretta. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system. Optical Express, 22(3):2465, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  16. S. Peng, B. Guo, C. Jackson, R. Nejabati, F. Agraz, S. Spadaro, G. Bernini, N. Ciulli, and D. Simeonidou. Multi-tenant software-defined hybrid optical switched data centre. J. Lightwave Technol., 33(15):3224--3233, Aug 2015.Google ScholarGoogle ScholarCross RefCross Ref
  17. J. Perelloìą, S. Spadaro, S. Ricciardi, D. Careglio, S. Peng, R. Nejabati, G. Zervas, D. Simeonidou, A. Predieri, M. Biancani, H. Dorren, S. Lucente, J. Luo, N. Calabretta, G. Bernini, N. Ciulli, J. Sancho, S. Iordache, M. Farreras, Y. Becerra, C. Liou, I. Hussain, Y. Yin, L. Liu, and R. Proietti. All-optical packet/circuit switching-based data center network for enhanced scalability, latency, and throughput. Network, IEEE, 27(6):14--22, November 2013.Google ScholarGoogle ScholarCross RefCross Ref
  18. Polatis. Polatis series 6000n protection services switch, 2014. {Online; Posted-2015}.Google ScholarGoogle Scholar
  19. G. Sankaran and K. Sivalingam. Scheduling in data center networks with optical traffic grooming. In Cloud Networking (CloudNet), 2014 IEEE 3rd International Conference on, pages 179--184, Oct 2014.Google ScholarGoogle ScholarCross RefCross Ref
  20. M. Technologies. OMNeT++ InfiniBand Flit Level Simulation Model. http://www.mellanox.com/page/omnet, 2015.Google ScholarGoogle Scholar
  21. A. Varga and R. Hornig. An overview of the omnet++ simulation environment. In Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, Simutools '08, pages 60:1--60:10, ICST, Brussels, Belgium, Belgium, 2008. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. E. Ng, M. Kozuch, and M. Ryan. c-through: part-time optics in data centers. SIGCOMM Comput. Commun. Rev., 41(4):--, Aug. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. X. Ye, Y. Yin, S. Yoo, P. Mejia, R. Proietti, and V. Akella. Dos - a scalable optical switch for datacenters. In Architectures for Networking and Communications Systems (ANCS), 2010 ACM/IEEE Symposium on, pages 1--12, Oct 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Scaling architecture-on-demand based optical networks

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICDCN '16: Proceedings of the 17th International Conference on Distributed Computing and Networking
      January 2016
      370 pages
      ISBN:9781450340328
      DOI:10.1145/2833312

      Copyright © 2016 ACM

      © 2016 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 4 January 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader