skip to main content
10.1145/2840728.2840751acmconferencesArticle/Chapter ViewAbstractPublication PagesitcsConference Proceedingsconference-collections
research-article
Public Access

Spectral Embedding of k-Cliques, Graph Partitioning and k-Means

Published:14 January 2016Publication History

ABSTRACT

We introduce and study a new notion of graph partitioning, intimately connected to spectral clustering and k-means clustering. Formally, given a graph G on n vertices, we ask to find a graph H that is the union of k cliques on n vertices, such that LG > λ LH where λ is maximized. Here LG and LH are the (normalized) Laplacians of the graphs G and H respectively. Informally, our graph partitioning objective asks for the optimal spectral simplification of a given graph as a disjoint union of k cliques.

We justify this objective function in several ways. First and foremost, we show that a commonly used spectral clustering algorithm implicitly optimizes this objective function, up to a factor of O(k). Using this connection, we immediately get an O(k)-approximation algorithm to our new objective function by simply using the spectral clustering algorithm on G. Next, we demonstrate another application of our objective function: we use it as a means to proving that simple spectral clustering algorithms can solve some well-studied graph partitioning problems (such as partitioning into expanders). Additionally, we also show that (a relaxation of) this optimization problem naturally arises as the dual problem to the question of finding the worst-case integrality gap instance for the classical k-means SDP. Finally, owing to these close connection between some classical clustering techniques (such as k-means and spectral clustering), we argue that a more complete understanding of this optimization problem could lead to new algorithmic insights and techniques for the area of graph partitioning.

References

  1. N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83--96, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. N. Alon, A. Lubotzky, and A. Wigderson. Semi-direct product in groups and zig-zag product in graphs: connections and applications. In Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pages 630--637. IEEE, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. N. Alon and V. D. Milman. λ1, isoperimetric inequalities for graphs, and superconcentrators. Journal of Combinatorial Theory, Series B, 38(1):73--88, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  4. S. Arora and S. Kale. A combinatorial, primal-dual approach to semidefinite programs. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 227--236. ACM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Arora and S. Kale. A combinatorial, primal-dual approach to semidefinite programs. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 227--236. ACM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. S. Arora, J. Lee, and A. Naor. Euclidean distortion and the sparsest cut. Journal of the American Mathematical Society, 21(1):1--21, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  7. S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and graph partitioning. Journal of the ACM (JACM), 56(2):5, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G. Arzhantseva and R. Tessera. Relatively expanding box spaces with no expansion. arXiv preprint arXiv:1402.1481, 2014.Google ScholarGoogle Scholar
  9. J. Batson, D. A. Spielman, and N. Srivastava. Twice-ramanujan sparsifiers. SIAM Journal on Computing, 41(6):1704--1721, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. P. Biswal, J. R. Lee, and S. Rao. Eigenvalue bounds, spectral partitioning, and metrical deformations via flows. Journal of the ACM (JACM), 57(3):13, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. E. G. Boman and B. Hendrickson. Support theory for preconditioning. SIAM Journal on Matrix Analysis and Applications, 25(3):694--717, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Cheeger. A lower bound for the smallest eigenvalue of the laplacian. Problems in analysis, 625:195--199, 1970.Google ScholarGoogle Scholar
  13. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864--894, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. I. Dhillon, Y. Guan, and B. Kulis. A unified view of kernel k-means, spectral clustering and graph cuts. Citeseer, 2004.Google ScholarGoogle Scholar
  15. I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: spectral clustering and normalized cuts. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 551--556. ACM, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi) cut theorems and their applications. SIAM Journal on Computing, 25(2):235--251, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. O. Gharan and L. Trevisan. Partitioning into expanders. In SODA, pages 1256--1266. SIAM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. O. Goldschmidt and D. S. Hochbaum. Polynomial algorithm for the k-cut problem. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 444--451. IEEE, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. N. J. Harvey and N. Olver. Pipage rounding, pessimistic estimators and matrix concentration. In SODA, pages 926--945. SIAM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Hopcroft and R. Kannan. Foundations of Data Science. 2014.Google ScholarGoogle Scholar
  21. K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and lagrangian relaxation. Journal of the ACM (JACM), 48(2):274--296, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad and spectral. Journal of the ACM (JACM), 51(3):497--515, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. A. Kelner. Spectral partitioning, eigenvalue bounds, and circle packings for graphs of bounded genus. SIAM Journal on Computing, 35(4):882--902, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. N. L. D. Khoa and S. Chawla. Large scale spectral clustering using resistance distance and spielman-teng solvers. In Discovery Science, pages 7--21. Springer, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  25. N. L. D. Khoa and S. Chawla. A scalable approach to spectral clustering with sdd solvers. Journal of Intelligent Information Systems, pages 1--20, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Kumar and R. Kannan. Clustering with spectral norm and the k-means algorithm. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 299--308. IEEE, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. R. Lee, S. Oveis Gharan, and L. Trevisan. Multi-way spectral partitioning and higher-order cheeger inequalities. In Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages 1117--1130. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. Journal of the ACM (JACM), 46(6):787--832, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Lichman. UCI machine learning repository, 2013.Google ScholarGoogle Scholar
  30. A. Louis, P. Raghavendra, P. Tetali, and S. Vempala. Many sparse cuts via higher eigenvalues. In Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages 1131--1140. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. F. McSherry. Spectral partitioning of random graphs. In Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pages 529--537. IEEE, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. M. Meila and J. Shi. A random walks view of spectral segmentation. 2001.Google ScholarGoogle Scholar
  33. A. Y. Ng, M. I. Jordan, Y. Weiss, et al. On spectral clustering: Analysis and an algorithm. Advances in neural information processing systems, 2:849--856, 2002.Google ScholarGoogle Scholar
  34. H. Qiu and E. R. Hancock. Clustering and embedding using commute times. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29(11):1873--1890, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. J. Shi and J. Malik. Normalized cuts and image segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 22(8):888--905, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM Journal on Computing, 40(6):1913--1926, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. D. A. Spielman and S.-H. Teng. Spectral partitioning works: Planar graphs and finite element meshes. Linear Algebra and its Applications, 421(2):284--305, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  38. D. A. Spielman and S.-H. Teng. Spectral sparsification of graphs. SIAM Journal on Computing, 40(4):981--1025, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. L. Trevisan. Is cheeger-type approximation possible for nonuniform sparsest cut? arXiv preprint arXiv:1303.2730, 2013.Google ScholarGoogle Scholar
  40. Y. Weiss. Segmentation using eigenvectors: a unifying view. In Computer vision, 1999. The proceedings of the seventh IEEE international conference on, volume 2, pages 975--982. IEEE, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning, with application to clustering with side-information. In Advances in Neural Information Processing Systems, volume 15, 2003.Google ScholarGoogle Scholar
  42. E. Xing, E. P. Xing, M. Jordan, and M. I. Jordan. On semidefinite relaxations for normalized k-cut and connections to spectral clustering. 2003.Google ScholarGoogle Scholar
  43. D. Yan, L. Huang, and M. I. Jordan. Fast approximate spectral clustering. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 907--916. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Spectral Embedding of k-Cliques, Graph Partitioning and k-Means

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ITCS '16: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science
      January 2016
      422 pages
      ISBN:9781450340571
      DOI:10.1145/2840728

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 14 January 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      ITCS '16 Paper Acceptance Rate40of145submissions,28%Overall Acceptance Rate172of513submissions,34%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader