skip to main content
research-article

Computational design of reconfigurables

Published: 11 July 2016 Publication History

Abstract

A reconfigurable is an object or collection of objects whose transformation between various states defines its functionality or aesthetic appeal. For example, consider a mechanical assembly composed of interlocking pieces, a transforming folding bicycle, or a space-saving arrangement of apartment furniture. Unlike traditional computer-aided design of static objects, specialized tools are required to address problems unique to the computational design and revision of objects undergoing rigid transformations. Collisions and interpenetrations as objects transition from one configuration to another prevent the physical realization of a design. We present a software environment intended to support fluid interactive design of reconfigurables, featuring tools that identify, visualize, monitor and resolve infeasible configurations. We demonstrate the versatility of the environment on a number of examples spanning mechanical systems, urban dwelling, and interlocking puzzles, some of which we then realize via additive manufacturing.
Spatial-temporal information about collisions between objects is presented to the designer according to a cascading order of precedence. A designer may quickly determine when, and then where, and then how objects are colliding. This precedence guides the design and implementation of our four-dimensional spacetime bounding volume hierarchy for interactive-rate collision detection. On screen, the designer experiences a suite of interactive visualization and monitoring tools during editing: timeline notifications of new collisions, picture-in-picture windows for tracking collisions and suggestive hints for contact resolution. Contacts too tedious to remove manually can be eliminated automatically via our proposed constrained numerical optimization and swept-volume carving.

Supplementary Material

MP4 File (a90.mp4)

References

[1]
Allard, J., Faure, F., Courtecuisse, H., Falipou, F., Duriez, C., and Kry, P. G. 2010. Volume contact constraints at arbitrary resolution. ACM Trans. Graph. 29, 4 (July), 82:1--82:10.
[2]
Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. ACM Trans. Graph.
[3]
Bächer, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O. 2014. Spin-it: Optimizing moment of inertia for spinnable objects. ACM Trans. Graph..
[4]
Bächer, M., Coros, S., and Thomaszewski, B. 2015. Linkedit: interactive linkage editing using symbolic kinematics. ACM Trans. Graph..
[5]
Baraff, D., Witkin, A., and Kass, M. 2003. Untangling cloth. ACM Trans. Graph. 22, 3, 862--870.
[6]
Bernstein, G. L., and Wojtan, C. 2013. Putting holes in holey geometry: Topology change for arbitrary surfaces. ACM Trans. Graph..
[7]
Bharaj, G., Levin, D. I. W., Tompkin, J., Fei, Y., Pfister, H., Matusik, W., and Zheng, C. 2015. Computational design of metallophone contact sounds. ACM Trans. Graph..
[8]
Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (July), 594--603.
[9]
Cameron, S. 1990. Collision detection by four-dimensional intersection testing. IEEE T. Robotics and Automation.
[10]
Campen, M., and Kobbelt, L. 2010. Polygonal boundary evaluation of minkowski sums and swept volumes. Comput. Graph. Forum.
[11]
Ceylan, D., Li, W., Mitra, N. J., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. ACM Trans. Graph..
[12]
Erleben, K. 2004. Stable, Robust, and Versatile Multibody Dynamics Animation. PhD thesis, Univ. of Copenhagen.
[13]
Everitt, C. 2001. Interactive order-independent transparency. Tech. rep., nVidia Corp.
[14]
Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D. 2009. iWIRES: An analyze-and-edit approach to shape manipulation. ACM Trans. Graph..
[15]
Garg, A., Sageman-Furnas, A. O., Deng, B., Yue, Y., Grinspun, E., Pauly, M., and Wardetzky, M. 2014. Wire mesh design. ACM Trans. Graph..
[16]
Guibas, L. J. 1998. Kinetic data structures--a state of the art report. Proc. WAFR.
[17]
Harmon, D., Panozzo, D., Sorkine, O., and Zorin, D. 2011. Interference-aware geometric modeling. ACM Trans. Graph..
[18]
Igarashi, Y., Igarashi, T., and Mitani, J. 2012. Beady: Interactive beadwork design and construction. ACM Trans. Graph..
[19]
Jacobson, A., Panozzo, D., et al., 2013. libigl: A simple C++ geometry processing library. http://igl.ethz.ch/projects/libigl/.
[20]
Joubert, N., Roberts, M., Truong, A., Berthouzoz, F., and Hanrahan, P. 2015. An interactive tool for designing quadrotor camera shots. ACM Trans. Graph..
[21]
Kavraki, L. E., Švestka, P., Latombe, J.-C., and Over-mars, M. H. 1996. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE TRA.
[22]
Klosowski, J. T., Held, M., Mitchell, J. S., Sowizral, H., and Zikan, K. 1998. Efficient collision detection using bounding volume hierarchies of k-dops. IEEE TVCG.
[23]
Koo, B., Li, W., Yao, J., Agrawala, M., and Mitra, N. J. 2014. Creating works-like prototypes of mechanical objects. ACM Trans. Graph..
[24]
Li, H., Alhashim, I., Zhang, H., Shamir, A., and Cohen-Or, D. 2012. Stackabilization. ACM Trans. Graph..
[25]
Liu, S., Jacobson, A., and Gingold, Y. 2014. Skinning cubic Bézier splines and Catmull-Clark subdivision surfaces. ACM Trans. Graph..
[26]
Liu, T., Hertzmann, A., Li, W., and Funkhouser, T. 2015. Style compatibility for 3D furniture models. ACM Trans. Graph..
[27]
Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. 2011. Interactive furniture layout using interior design guidelines. ACM Trans. Graph..
[28]
Pavic, D., and Kobbelt, L. 2008. High-resolution volumetric computation of offset surfaces with feature preservation. Comput. Graph. Forum.
[29]
Peternell, M., Pottmann, H., Steiner, T., and Zhao, H. 2005. Swept volumes. Computer-Aided Design Appl..
[30]
Popović, J., Seitz, S. M., Erdmann, M., Popović, Z., and Witkin, A. 2000. Interactive manipulation of rigid body simulations. In Proc. SIGGRAPH.
[31]
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press.
[32]
Schroeder, W. J., Lorensen, W. E., and Linthicum, S. 1994. Implicit modeling of swept surfaces and volumes. In Proc. of the Conference on Visualization.
[33]
Schüller, C., Panozzo, D., and Sorkine-Hornung, O. 2014. Appearance-mimicking surfaces. ACM Trans. Graph..
[34]
Schulz, A., Shamir, A., Levin, D. I. W., Sitthi-Amorn, P., and Matusik, W. 2014. Design and fabrication by example. ACM Trans. Graph..
[35]
Secord, A., Lu, J., Finkelstein, A., Singh, M., and Nealen, A. 2011. Perceptual models of viewpoint preference. ACM Trans. Graph..
[36]
Shao, M.-Z., and Badler, N. 1996. Spherical sampling by archimedes' theorem. Tech. rep., Univ. of Penn.
[37]
Shoemake, K. 1992. Uniform random rotations. In Graphics Gems III. Morgan Kaufmann.
[38]
Skouras, M., Thomaszewski, B., Bickel, B., and Gross, M. 2012. Computational design of rubber balloons. Comput. Graph. Forum.
[39]
Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. ACM Trans. Graph..
[40]
Snibbe, S. S. 1995. A direct manipulation interface for 3d computer animation. Comput. Graph. Forum.
[41]
Sun, T., and Zheng, C. 2015. Computational design of twisty joints and puzzles. ACM Trans. Graph..
[42]
Tang, M., Manocha, D., Yoon, S.-E., Du, P., Heo, J.-P., and Tong, R.-F. 2011. Volccd: Fast continuous collision culling between deforming volume meshes. ACM Trans. Graph. 30, 5 (Oct.), 111:1--111:15.
[43]
Teschner, M., Kimmerle, S., Zachmann, G., Heidelberger, B., Raghupathi, L., Fuhrmann, A., Cani, M.-P., Faure, F., Magnenat-Thalmann, N., and Strasser, W. 2004. Collision detection for deformable objects. In Proc. Eurographics (STAR).
[44]
Thomaszewski, B., Coros, S., Gauge, D., Megaro, V., Grinspun, E., and Gross, M. 2014. Computational design of linkage-based characters. ACM Trans. Graph..
[45]
Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment editing and modeling. ACM Trans. Graph..
[46]
Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM Trans. Graph..
[47]
Umetani, N., Koyama, Y., Schmidt, R., and Igarashi, T. 2014. Pteromys: Interactive design and optimization of free-formed free-flight model airplanes. ACM Trans. Graph..
[48]
Volino, P., and Magnenat-Thalmann, N. 2006. Resolving surface collisions through intersection contour minimization. ACM Trans. Graph..
[49]
Wang, B., Faure, F., and Pai, D. K. 2012. Adaptive image-based intersection volume. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4.
[50]
Weld, J. D., and Leu, M. C. 1990. Geometric representation of swept volumes with application to polyhedral objects. Int. J. Rob. Res..
[51]
Witkin, A., and Kass, M. 1988. Spacetime constraints. Proc. SIGGRAPH.
[52]
Xin, S., Lai, C.-F., Fu, C.-W., Wong, T.-T., He, Y., and Cohen-Or, D. 2011. Making burr puzzles from 3d models. ACM Trans. Graph..
[53]
Yu, L.-F., Yeung, S. K., Tang, C.-K., Terzopoulos, D., Chan, T. F., and Osher, S. 2011. Make it home: automatic optimization of furniture arrangement. ACM Trans. Graph..
[54]
Zhou, Y., Sueda, S., Matusik, W., and Shamir, A. 2014. Boxelization: Folding 3d objects into boxes. ACM Trans. Graph..

Cited By

View all
  • (2024)Magic Furniture: Design Paradigm of Multi-Function AssemblyIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.325048830:7(4068-4079)Online publication date: 1-Jul-2024
  • (2024)An Easy-to-Build Modular Robot Implementation of Chain-Based Physical Transformation for STEM EducationComputer-Aided Design and Computer Graphics10.1007/978-981-99-9666-7_12(170-185)Online publication date: 7-Feb-2024
  • (2022)Interactive and Robust Mesh BooleansACM Transactions on Graphics10.1145/3550454.355546041:6(1-14)Online publication date: 30-Nov-2022
  • Show More Cited By

Index Terms

  1. Computational design of reconfigurables

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 35, Issue 4
    July 2016
    1396 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2897824
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 July 2016
    Published in TOG Volume 35, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tag

    1. computational design

    Qualifiers

    • Research-article

    Funding Sources

    • NSF

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)36
    • Downloads (Last 6 weeks)6
    Reflects downloads up to 03 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Magic Furniture: Design Paradigm of Multi-Function AssemblyIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.325048830:7(4068-4079)Online publication date: 1-Jul-2024
    • (2024)An Easy-to-Build Modular Robot Implementation of Chain-Based Physical Transformation for STEM EducationComputer-Aided Design and Computer Graphics10.1007/978-981-99-9666-7_12(170-185)Online publication date: 7-Feb-2024
    • (2022)Interactive and Robust Mesh BooleansACM Transactions on Graphics10.1145/3550454.355546041:6(1-14)Online publication date: 30-Nov-2022
    • (2022)Co-Optimization of Design and Fabrication Plans for CarpentryACM Transactions on Graphics10.1145/350849941:3(1-13)Online publication date: 9-Mar-2022
    • (2022)Worst‐Case Rigidity Analysis and Optimization for Assemblies with Mechanical JointsComputer Graphics Forum10.1111/cgf.1449041:2(507-519)Online publication date: 24-May-2022
    • (2021)Swept volumes via spacetime numerical continuationACM Transactions on Graphics10.1145/3450626.345978040:4(1-11)Online publication date: 19-Jul-2021
    • (2021)State of the Art on Computational Design of Assemblies with Rigid PartsComputer Graphics Forum10.1111/cgf.14266040:2(633-657)Online publication date: 4-Jun-2021
    • (2021)Motion Planning for Convertible Indoor Scene Layout DesignIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2020.300568027:12(4413-4424)Online publication date: 1-Dec-2021
    • (2020)Fast and robust mesh arrangements using floating-point arithmeticACM Transactions on Graphics10.1145/3414685.341781839:6(1-16)Online publication date: 27-Nov-2020
    • (2020)RomeoProceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology10.1145/3379337.3415826(897-911)Online publication date: 20-Oct-2020
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media