skip to main content
research-article
Public Access

Acoustic voxels: computational optimization of modular acoustic filters

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

Acoustic filters have a wide range of applications, yet customizing them with desired properties is difficult. Motivated by recent progress in additive manufacturing that allows for fast prototyping of complex shapes, we present a computational approach that automates the design of acoustic filters with complex geometries. In our approach, we construct an acoustic filter comprised of a set of parameterized shape primitives, whose transmission matrices can be precomputed. Using an efficient method of simulating the transmission matrix of an assembly built from these underlying primitives, our method is able to optimize both the arrangement and the parameters of the acoustic shape primitives in order to satisfy target acoustic properties of the filter. We validate our results against industrial laboratory measurements and high-quality off-line simulations. We demonstrate that our method enables a wide range of applications including muffler design, musical wind instrument prototyping, and encoding imperceptible acoustic information into everyday objects.

Skip Supplemental Material Section

Supplemental Material

References

  1. Allen, A., and Raghuvanshi, N. 2015. Aerophones in flatland: Interactive wave simulation of wind instruments. ACM Trans. Graph. 34, 4 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Angell, T., Jiang, X., and Kleinman, R. 1997. A distributed source method for inverse acoustic scattering. Inverse Problems 13, 2, 531.Google ScholarGoogle ScholarCross RefCross Ref
  3. Aubry, J.-P. 2013. Beginning with Code_Aster. Framasoft.Google ScholarGoogle Scholar
  4. Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. ACM Trans. Graph. 28, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bharaj, G., Levin, D. I. W., Tompkin, J., Fei, Y., Pfister, H., Matusik, W., and Zheng, C. 2015. Computational design of metallophone contact sounds. ACM Trans. Graph. 34, 6 (Oct.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Braden, A. C., Newton, M. J., and Campbell, D. M. 2009. Trombone bore optimization based on input impedance targets. The Journal of the Acoustical Society of America 125, 4.Google ScholarGoogle ScholarCross RefCross Ref
  8. Caloz, C., and Itoh, T. 2005. Electromagnetic metamaterials: transmission line theory and microwave applications. John Wiley & Sons.Google ScholarGoogle Scholar
  9. Chiu, M.-C. 2010. Shape optimization of multi-chamber mufflers with plug-inlet tube on a venting process by genetic algorithms. Applied Acoustics 71, 6, 495--505.Google ScholarGoogle ScholarCross RefCross Ref
  10. Christopoulos, C. 2006. The Transmission-Line Modeling (TLM) Method in Electromagnetics. Morgan & Claypool Publishers.Google ScholarGoogle Scholar
  11. De Lima, K. F., Lenzi, A., and Barbieri, R. 2011. The study of reactive silencers by shape and parametric optimization techniques. Applied Acoustics 72, 4, 142--150.Google ScholarGoogle ScholarCross RefCross Ref
  12. Dokmanić, I., Parhizkar, R., Walther, A., Lu, Y. M., and Vetterli, M. 2013. Acoustic echoes reveal room shape. Proceedings of the National Academy of Sciences 110, 30.Google ScholarGoogle ScholarCross RefCross Ref
  13. Feijóo, G. R., Oberai, A. A., and Pinsky, P. M. 2004. An application of shape optimization in the solution of inverse acoustic scattering problems. Inverse problems 20, 1, 199.Google ScholarGoogle Scholar
  14. Funkhouser, T., Carlbom, I., Elko, G., Pingali, G., Sondhi, M., and West, J. 1998. A beam tracing approach to acoustic modeling for interactive virtual environments. In Proc. of SIGGRAPH 98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Funkhouser, T. A., Min, P., and Carlbom, I. 1999. Realtime acoustic modeling for distributed virtual environments. In Proc. of SIGGRAPH 99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hämäläinen, P., Eriksson, S., Tanskanen, E., Kyrki, V., and Lehtinen, J. 2014. Online motion synthesis using sequential monte carlo. ACM Trans. Graph. 33, 4 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ingard, U. 2009. Noise reduction analysis. Jones & Bartlett Publishers.Google ScholarGoogle Scholar
  18. James, D. L., Barbic, J., and Pai, D. K. 2006. Precomputed acoustic transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Trans. Graph. 25, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kac, M. 1966. Can one hear the shape of a drum? American Mathematical Monthly, 1--23.Google ScholarGoogle Scholar
  20. Kausel, W. 2001. Optimization of brasswind instruments and its application in bore reconstruction. Journal of New Music Research 30, 1, 69--82.Google ScholarGoogle ScholarCross RefCross Ref
  21. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. 1983. Optimization by simulated annealing. Science 220, 4598, 671--680.Google ScholarGoogle Scholar
  22. Laput, G., Brockmeyer, E., Hudson, S. E., and Harrison, C. 2015. Acoustruments: Passive, acoustically-driven, interactive controls for handheld devices. In Proc. CHI 2015, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Li, D., Fei, Y., and Zheng, C. 2015. Interactive acoustic transfer approximation for modal sound. ACM Trans. Graph. 35, 1 (Dec.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. Graph. 23, 3 (Aug.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mehra, R., Raghuvanshi, N., Antani, L., Chandak, A., Curtis, S., and Manocha, D. 2013. Wave-based sound propagation in large open scenes using an equivalent source formulation. ACM Trans. Graph. 32, 2 (Apr.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Miguez, J., Crisan, D., and Djuric, P. M. 2010. Sequential monte carlo methods for the optimization of a general class of objective functions. SIAM Journal on Optimization.Google ScholarGoogle Scholar
  27. Monks, M., Oh, B. M., and Dorsey, J. 2000. Audioptimiza-tion: goal-based acoustic design. Computer Graphics and Applications, IEEE 20, 3, 76--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Munjal, M. 2014. Acoustics of Ducts and Mufflers, second ed. John Wiley & Sons.Google ScholarGoogle Scholar
  29. Noreland, J. D., Udawalpola, M. R., and Berggren, O. M. 2010. A hybrid scheme for bore design optimization of a brass instrument. Journal of the Acoustical Society of America 128, 3, 1391--1400.Google ScholarGoogle ScholarCross RefCross Ref
  30. Panetta, J., Zhou, Q., Malomo, L., Pietroni, N., Cignoni, P., and Zorin, D. 2015. Elastic textures for additive fabrication. ACM Trans. Graph. 34, 4 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Pegoraro, V., Wald, I., and Parker, S. G. 2008. Sequential monte carlo adaptation in low-anisotropy participating media. In Computer Graphics Forum, vol. 27, Wiley Online Library. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Pierce, A. D., et al. 1991. Acoustics: an introduction to its physical principles and applications. Acoustical Society of America Melville, NY.Google ScholarGoogle Scholar
  33. Raghuvanshi, N., and Snyder, J. 2014. Parametric wave field coding for precomputed sound propagation. ACM Trans. Graph. 33, 4 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Raghuvanshi, N., Snyder, J., Mehra, R., Lin, M., and Govindaraju, N. 2010. Precomputed wave simulation for realtime sound propagation of dynamic sources in complex scenes. ACM Trans. Graph. 29, 4 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Rienstra, S. W., and Hirschberg, A. 2003. An introduction to acoustics. Eindhoven University of Technology 18, 19.Google ScholarGoogle Scholar
  36. Ritchie, D., Mildenhall, B., Goodman, N. D., and Hanrahan, P. 2015. Controlling procedural modeling programs with stochastically-ordered sequential monte carlo. ACM Trans. Graph. 34, 4 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Robert, C., and Casella, G. 2013. Monte Carlo statistical methods. Springer Science & Business Media. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Savage, V., Head, A., Hartmann, B., Goldman, D. B., Mysore, G., and Li, W. 2015. Lamello: Passive acoustic sensing for tangible input components. In Proc. CHI 2015, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Schumacher, C., Bickel, B., Rys, J., Marschner, S., Daraio, C., and Gross, M. 2015. Microstructures to control elasticity in 3d printing. ACM Trans. Graph. 34, 4 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Selamet, A., Denia, F., and Besa, A. 2003. Acoustic behavior of circular dual-chamber mufflers. Journal of Sound and Vibration 265, 5, 967--985.Google ScholarGoogle ScholarCross RefCross Ref
  41. Sigmund, O. 1994. Materials with prescribed constitutive parameters: an inverse homogenization problem. International Journal of Solids and Structures 31, 17, 2313--2329.Google ScholarGoogle ScholarCross RefCross Ref
  42. Stettner, A., and Greenberg, D. P. 1989. Computer graphics visualization for acoustic simulation. In Computer Graphics, vol. 23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Takala, T., and Hahn, J. 1992. Sound rendering. In Computer Graphics, vol. 26, 211--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Tao, Z., and Seybert, A. 2003. A review of current techniques for measuring muffler transmission loss. Tech. rep., SAE Technical Paper.Google ScholarGoogle Scholar
  45. Tsingos, N., Funkhouser, T., Ngan, A., and Carlbom, I. 2001. Modeling acoustics in virtual environments using the uniform theory of diffraction. In Proc. of SIGGRAPH 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment modeling and editing. ACM Trans. Graph. 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Willis, K. D. D., and Wilson, A. D. 2013. Infrastructs: Fabricating information inside physical objects for imaging in the terahertz region. ACM Trans. Graph. 32, 4 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Wojtan, C., Mucha, P. J., and Turk, G. 2006. Keyframe control of complex particle systems using the adjoint method. In Proc. SCA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. 1997. Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Zoran, A. 2011. The 3d printed flute: Digital fabrication and design of musical instruments. Journal of New Music Research 40, 4, 379--387.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Acoustic voxels: computational optimization of modular acoustic filters

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 35, Issue 4
        July 2016
        1396 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2897824
        Issue’s Table of Contents

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 11 July 2016
        Published in tog Volume 35, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader