skip to main content
10.1145/2901318.2901336acmotherconferencesArticle/Chapter ViewAbstractPublication PageseurosysConference Proceedingsconference-collections
research-article

TFC: token flow control in data center networks

Published: 18 April 2016 Publication History

Abstract

Services in modern data center networks pose growing performance demands. However, the widely existed special traffic patterns, such as micro-burst, highly concurrent flows, on-off pattern of flow transmission, exacerbate the performance of transport protocols. In this work, an clean-slate explicit transport control mechanism, called Token Flow Control (TFC), is proposed for data center networks to achieve high link utilization, ultra-low latency, fast convergence, and rare packets dropping. TFC uses tokens to represent the link bandwidth resource and define the concept of effective flows to stand for consumers. The total tokens will be explicitly allocated to each consumer every time slot. TFC excludes in-network buffer space from the flow pipeline and thus achieves zero-queueing. Besides, a packet delay function is added at switches to prevent packets dropping with highly concurrent flows. The performance of TFC is evaluated using both experiments on a small real testbed and large-scale simulations. The results show that TFC achieves high throughput, fast convergence, near zero-queuing and rare packets loss in various scenarios.

References

[1]
NetFPGA project. http://netfpga.org/.
[2]
Yahoo! M45 supercomputing project. http://research.yahoo.com/node/1884, 2009.
[3]
Google Research: Three things that MUST BE DONE to save the data center of the future. http://www.theregister.co.uk/2014/02/11/google_research_three_things_that_must_be_done_to_save_the_data_center_of_the_future/?page=3, Feb. 2014.
[4]
Storm: Distributed and fault-tolerant realtime computation. http://storm-project.net/, January 2014.
[5]
D. Abts and B. Felderman. A Guided Tour through Datacenter Networking. ACM Queue, 10(5):10, 2012.
[6]
M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network architecture. In Proceedings of the ACM SIGCOMM, 2008.
[7]
M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). In Proceedings of the ACM SIGCOMM, 2010.
[8]
M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda. Less is More: Trading a little Bandwidth for Ultra-Low Latency in the Data Center. In Proceedings of the USENIX NSDI, 2012.
[9]
M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker. pfabric: Minimal Near-Optimal Datacenter Transport. In Proceedings of the ACM SIGCOMM, 2013.
[10]
B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload Analysis of a Large-Scale Key-Value Store. In Proceedings of the ACM SIGMETRICS, 2012.
[11]
W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang. Information-Agnostic Flow Scheduling for Commodity Data Centers. In Proceedings of the USENIX NSDI, 2015.
[12]
L. A. Barroso, J. Dean, and U. Holzle. Web Search for a Planet: The Google Cluster Architecture. Micro, 23(2):22--28, 2003.
[13]
T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE: Fine Grained Traffic Engineering for Data Centers. In Proceedings of the ACM CoNEXT, 2011.
[14]
Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph. Understanding TCP Incast Throughput Collapse in Datacenter Networks. In Proceedings of the 1st ACM workshop on Research on enterprise networking, 2009.
[15]
P. Cheng, F. Ren, R. Shu, and C. Lin. Catch the Whole Lot in an Action: Rapid Precise Packet Loss Notification in Data Center. In Proceedings of the USENIX NSDI, 2014.
[16]
J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In Proceedings of the USENIX OSDI, 2004.
[17]
N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKeown. Processor Sharing Flows in the Internet. In Quality of Service--IWQoS 2005. 2005.
[18]
B. Fitzpatrick. Distributed Caching with Memcached. Linux journal, 2004(124):5, 2004.
[19]
A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: a Scalable and Flexible Data Center Network. In Proceedings of the ACM SIGCOMM, 2009.
[20]
M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W. Moore, S. Hand, and J. Crowcroft. Queues Dont Matter When You Can JUMP Them! In Proceedings of the USENIX NSDI, 2015.
[21]
C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing Flows Quickly with Preemptive Scheduling. In Proceedings of the ACM SIGCOMM, 2012.
[22]
S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The Nature of Data Center Traffic: Measurements & Analysis. In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference, 2009.
[23]
D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High Bandwidth-delay Product Networks. Proceedings of the ACM SIGCOMM, 2002.
[24]
H. Kung and K. Chang. Receiver-Oriented Adaptive Buffer Allocation in Credit-Based Flow Control for ATM Networks. In IEEE INFOCOM, pages 239--252, 1995.
[25]
H. Kung and A. Chapman. The FCVC (Flow-Controlled Virtual Channels) Proposal for ATM Networks: A Summary. In IEEE ICNP, pages 116--127, 1993.
[26]
H. Kung and R. Morris. Credit-Based Flow Control for ATM Networks. IEEE Network, 9(2):40--48, 1995.
[27]
H. Kung and S. Y. Wang. Client-Server Performance on Flow-Controlled ATM Networks: a Web Database of Simulation Results. In IEEE INFOCOM, pages 1218--1226, 1997.
[28]
H. Kung and S. Y. Wang. Zero Queueing Flow Control and Applications. In IEEE INFOCOM, pages 192--200, 1998.
[29]
Y. J. Liu, P. X. Gao, B. Wong, and S. Keshav. Quartz: a New Design Element for Low-Latency DCNs. In Proceedings of the ACM SIGCOMM, 2014.
[30]
A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. X. Liu, and F. R. Dogar. Friends, not Foes: Synthesizing Existing Transport Strategies for Data Center Networks. In Proceedings of the ACM SIGCOMM, 2014.
[31]
J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal. Fastpass: A Centralized Zero-Queue Datacenter Network. In Proceedings of the ACM SIGCOMM, 2014.
[32]
P. Prakash, A. Dixit, Y. C. Hu, and R. Kompella. The TCP Outcast Problem: Exposing Unfairness in Data Center Networks. In Proceedings of the USENIX NSDI, 2012.
[33]
R. Rejaie, M. Handley, and D. Estrin. RAP: An End-to-End Rate-based Congestion Control Mechanism for Realtime Streams in the Internet. In Proceedings of the IEEE INFOCOM, 1999.
[34]
A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, et al. Storm@ Twitter. In Proceedings of the ACM SIGMOD, 2014.
[35]
B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-Aware Datacenter TCP (D2TCP). In Proceedings of the ACM SIGCOMM, 2012.
[36]
V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller. Safe and Effective Fine-grained TCP Retransmissions for Datacenter Communication. In Proceedings of the ACM SIGCOMM, 2009.
[37]
C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better Never than Late Meeting Deadlines in Datacenter Networks. In Proceedings of the ACM SIGCOMM, 2011.
[38]
H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast Congestion Control for TCP in Data Center Networks. In Proceedings of the 6th ACM CoNEXT, 2010.
[39]
J. Zhang, F. Ren, and C. Lin. Modeling and Understanding TCP Incast in Data Center Networks. In Proceedings of the IEEE INFOCOM, 2011.
[40]
Y. Zhang, S. Jain, and D. Loguinov. Towards Experimental Evaluation of Explicit Congestion Control. Computer Networks, 53(7):1027--1039, 2009.

Cited By

View all
  • (2024)Accurate and fast congestion feedback in MEC-enabled RDMA datacentersJournal of Cloud Computing10.1186/s13677-024-00642-813:1Online publication date: 25-Mar-2024
  • (2024)SAR: Receiver-Driven Transport Protocol With Micro-Burst Prediction in Data Center NetworksIEEE Transactions on Network and Service Management10.1109/TNSM.2024.345059721:6(6409-6422)Online publication date: Dec-2024
  • (2024)PACC: A Proactive CNP Generation Scheme for Datacenter NetworksIEEE/ACM Transactions on Networking10.1109/TNET.2024.336177132:3(2586-2599)Online publication date: Jun-2024
  • Show More Cited By

Index Terms

  1. TFC: token flow control in data center networks

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    EuroSys '16: Proceedings of the Eleventh European Conference on Computer Systems
    April 2016
    605 pages
    ISBN:9781450342407
    DOI:10.1145/2901318
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 18 April 2016

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. data centers
    2. fast convergence
    3. flow control
    4. low latency
    5. rare loss

    Qualifiers

    • Research-article

    Funding Sources

    • National Basic Research Program of China (973 Program)
    • National High-Tech Research and Development Plan of China (863 Plan)
    • National Natural Science Foundation of China (NSFC)

    Conference

    EuroSys '16
    EuroSys '16: Eleventh EuroSys Conference 2016
    April 18 - 21, 2016
    London, United Kingdom

    Acceptance Rates

    EuroSys '16 Paper Acceptance Rate 38 of 180 submissions, 21%;
    Overall Acceptance Rate 241 of 1,308 submissions, 18%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)16
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 19 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Accurate and fast congestion feedback in MEC-enabled RDMA datacentersJournal of Cloud Computing10.1186/s13677-024-00642-813:1Online publication date: 25-Mar-2024
    • (2024)SAR: Receiver-Driven Transport Protocol With Micro-Burst Prediction in Data Center NetworksIEEE Transactions on Network and Service Management10.1109/TNSM.2024.345059721:6(6409-6422)Online publication date: Dec-2024
    • (2024)PACC: A Proactive CNP Generation Scheme for Datacenter NetworksIEEE/ACM Transactions on Networking10.1109/TNET.2024.336177132:3(2586-2599)Online publication date: Jun-2024
    • (2024)Alleviating Congestion via Switch Design for Fair Buffer Allocation in DatacentersIEEE Transactions on Cloud Computing10.1109/TCC.2024.335759512:1(219-231)Online publication date: Jan-2024
    • (2023)Congestion Control for Datacenter Networks: A Control-Theoretic ApproachIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2023.325979934:5(1682-1696)Online publication date: May-2023
    • (2023)A Receiver-Driven Transport Protocol With High Link Utilization Using Anti-ECN Marking in Data Center NetworksIEEE Transactions on Network and Service Management10.1109/TNSM.2022.321834320:2(1898-1912)Online publication date: Jun-2023
    • (2023)REN: Receiver-Driven Congestion Control Using Explicit Notification for Data CenterIEEE Transactions on Cloud Computing10.1109/TCC.2021.313502711:2(1381-1394)Online publication date: 1-Apr-2023
    • (2023)AdaptaCC: A Highly Scalable Proactive Congestion Control for Hyper-speed Networks2023 IEEE International Conference on High Performance Computing & Communications, Data Science & Systems, Smart City & Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys)10.1109/HPCC-DSS-SmartCity-DependSys60770.2023.00034(185-193)Online publication date: 17-Dec-2023
    • (2022)RCC: Enabling Receiver-Driven RDMA Congestion Control With Congestion Divide-and-Conquer in Datacenter NetworksIEEE/ACM Transactions on Networking10.1109/TNET.2022.3185105(1-15)Online publication date: 2022
    • (2022)Aeolus: A Building Block for Proactive Transport in Datacenter NetworksIEEE/ACM Transactions on Networking10.1109/TNET.2021.311998630:2(542-556)Online publication date: Apr-2022
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media