skip to main content
10.1145/2910017.2910593acmconferencesArticle/Chapter ViewAbstractPublication PagesmmsysConference Proceedingsconference-collections
research-article

SQUAD: a spectrum-based quality adaptation for dynamic adaptive streaming over HTTP

Authors Info & Claims
Published:10 May 2016Publication History

ABSTRACT

The application-layer based control loops of dynamic adaptive streaming over HTTP (DASH) make video bitrate selection a complex problem. In this work, we review and present new insights into the challenges of DASH rate adaptation. We identify several critical issues that contribute to the degradation of DASH performance with respect to the rate control loops of DASH and TCP. We then introduce a novel DASH quality adaptation algorithm SQUAD, which is specifically designed to ensure high quality of experience (QoE). We implement and test our algorithm together with a number of state-of-the-art quality adaptation algorithms. Through extensive experiments on both testbed and cross-Atlantic Internet scenarios, we show that by sacrificing little to none in average quality bitrate, SQUAD provides significantly better QoE in terms of number and magnitude of quality switches.

References

  1. Adobe HTTP Dynamic Streaming. http://www.adobe.com/products/hds-dynamic-streaming.html. Accessed: 2015-12-09.Google ScholarGoogle Scholar
  2. Apple HTTP Live Streaming. https://developer.apple.com/resources/http-streaming/. Accessed: 2015-11-09.Google ScholarGoogle Scholar
  3. Global Internet phenomena report 2h 2014. https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/2h-2014-global-internet-phenomena-report.pdf. Accessed: March, 30, 2015.Google ScholarGoogle Scholar
  4. Microsoft Smooth Streaming. http://www.iis.net/downloads/microsoft/smooth-streaming. Accessed: 2015-11-09.Google ScholarGoogle Scholar
  5. Optimal segment length for adaptive streaming formats like MPEG-DASH & HLS. http://www.dash-player.com/blog/2015/04/using-the-optimal-segment-length-for-adaptive-streaming-formats-like-mpeg-dash-hls/. Accessed: 2015-10-14.Google ScholarGoogle Scholar
  6. S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis. What happens when HTTP adaptive streaming players compete for bandwidth? In Proceedings of NOSSDAV, pages 9--14, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Akhshabi, A. C. Begen, and C. Dovrolis. An experimental evaluation of rate-adaptation algorithms in adaptive streaming over HTTP. In Proceedings of MMSys, pages 157--168, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaudhuri, R. Ricci, and I. Seskar. Geni: A federated testbed for innovative network experiments. Computer Networks, 61(0):5--23, 2014. Special issue on Future Internet Testbeds -- Part I.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Berman, P. Demeester, J. W. Lee, K. Nagaraja, M. Zink, D. Colle, D. K. Krishnappa, D. Raychaudhuri, H. Schulzrinne, I. Seskar, and S. Sharma. Future Internets escape the simulator. Commun. ACM, 58(6):78--89, May 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. L. De Cicco, S. Mascolo, and V. Palmisano. Feedback control for adaptive live video streaming. In Proceedings of MMSys, pages 145--156, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. F. Fund, C. Wang, Y. Liu, T. Korakis, M. Zink, and S. Panwar. Performance of DASH and WebRTC video services for mobile users. In IEEE Packet Video Workshop (PV), pages 1--8, Dec 2013.Google ScholarGoogle ScholarCross RefCross Ref
  12. G. Giambene. Queuing Theory and Telecommunications: Networks and Applications. Springer US, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari. Confused, timid, and unstable: Picking a video streaming rate is hard. In Proceedings of IMC, pages 225--238, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A buffer-based approach to rate adaptation: Evidence from a large video streaming service. In Proceedings of SIGCOMM, pages 187--198, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Jain and C. Dovrolis. End-to-end available bandwidth: Measurement methodology, dynamics, and relation with TCP throughput. Transactions on Networking, 11(4):537--549, Aug. 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. P. Juluri, V. Tamarapalli, and D. Medhi. Sara: Segment-aware rate adaptation algorithm for dynamic adaptive streaming over HTTP. In IEEE ICC QoE-FI Workshop, June 2015.Google ScholarGoogle ScholarCross RefCross Ref
  17. S. S. Krishnan and R. K. Sitaraman. Video stream quality impacts viewer behavior: Inferring causality using quasi-experimental designs. In Proceedings of IMC, pages 211--224, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Lederer, C. Müller, and C. Timmerer. Dynamic adaptive streaming over HTTP dataset. In Proceedings of MMSys, pages 89--94, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Z. Li, A. C. Begen, J. Gahm, Y. Shan, B. Osler, and D. Oran. Streaming video over HTTP with consistent quality. In Proceedings of MMSys, pages 248--258, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. Begen, and D. Oran. Probe and adapt: Rate adaptation for HTTP video streaming at scale. IEEE Journal on Selected Areas in Communications, 32(4):719--733, April 2014.Google ScholarGoogle ScholarCross RefCross Ref
  21. C. Müller and C. Timmerer. A VLC media player plugin enabling dynamic adaptive streaming over HTTP. In Proceedings of MMSys, pages 723--726, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. O. Oyman and S. Singh. Quality of experience for HTTP adaptive streaming services. IEEE Communications Magazine, 50(4):20--27, April 2012.Google ScholarGoogle ScholarCross RefCross Ref
  23. A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and W. Dabbous. Network characteristics of video streaming traffic. In Proceedings of CoNEXT, pages 25:1--25:12, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. I. Sodagar. The MPEG-DASH standard for multimedia streaming over the Internet. IEEE MultiMedia, 18(4):62--67, April 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. G. Tian and Y. Liu. Towards agile and smooth video adaptation in dynamic HTTP streaming. In Proceedings of CoNEXT, pages 109--120, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. B. Villa and P. Heegaard. Group based traffic shaping for adaptive HTTP video streaming by segment duration control. In Proceedings of AINA, pages 830--837, March 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An integrated experimental environment for distributed systems and networks. In Proceedings of OSDI, pages 255--270, Dec. 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. Whiteaker, F. Schneider, and R. Teixeira. Explaining packet delays under virtualization. SIGCOMM Computer Communication Review, 41(1):38--44, Jan. 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. Xiang, L. Cai, and J. Pan. Adaptive scalable video streaming in wireless networks. In Proceedings of MMSys, pages 167--172, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A control-theoretic approach for dynamic adaptive video streaming over HTTP. In Proceedings of ACM SIGCOMM, pages 325--338, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. Zink, J. Schmitt, and R. Steinmetz. Layer-encoded video in scalable adaptive streaming. IEEE Transactions on Multimedia, 7(1):75--84, Feb 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. SQUAD: a spectrum-based quality adaptation for dynamic adaptive streaming over HTTP

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      MMSys '16: Proceedings of the 7th International Conference on Multimedia Systems
      May 2016
      420 pages
      ISBN:9781450342971
      DOI:10.1145/2910017
      • General Chair:
      • Christian Timmerer

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 10 May 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      MMSys '16 Paper Acceptance Rate20of71submissions,28%Overall Acceptance Rate176of530submissions,33%

      Upcoming Conference

      MMSys '24
      ACM Multimedia Systems Conference 2024
      April 15 - 18, 2024
      Bari , Italy

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader