skip to main content
10.1145/2915926.2915931acmotherconferencesArticle/Chapter ViewAbstractPublication PagescasaConference Proceedingsconference-collections
research-article

An Immersive Bidirectional System for Life-size 3D Communication

Published:23 May 2016Publication History

ABSTRACT

Telecommunication and video conferencing are an integral part of modern society with implications in many aspects of everyday life. However, compared to a meeting in person, the sense of presence is still limited in electronic communication. In this paper, we present a novel system for life-size 3D telecommunication. It is designed to create an immersive user experience by seamlessly embedding a remote conversation partner into the local environment. To achieve this, users are captured in 3D by hybrid (color+depth) sensors and displayed on a life-size transparent 3D display. We have built two instances of this system in Zurich and Singapore. They form a complete and fully functional prototype enabling bidirectional communication in real-time over a long distance. We further demonstrate alternative hardware setups, which make our system flexible and adaptable to different usage scenarios.

References

  1. Web real-time communication (WebRTC), 2011.Google ScholarGoogle Scholar
  2. T. Balogh and P. T. Kovács. Real-time 3D light field transmission. In SPIE Photonics Europe, pages 772406--772406. Int. Soc. for Optics and Photonics, 2010.Google ScholarGoogle Scholar
  3. S. Beck, A. Kunert, A. Kulik, and B. Froehlich. Immersive group-to-group telepresence. IEEE TVCG, 19(4):616--625, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Y. Chen, M. M. Hannuksela, T. Suzuki, and S. Hattori. Overview of the MVC + D 3D video coding standard. J. Visual Communication and Image Representation, 25(4):679--688, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. H. Fuchs, G. Bishop, K. Arthur, L. McMillan, R. Bajcsy, S. Lee, H. Farid, and T. Kanade. Virtual space teleconferencing using a sea of cameras. In Proc. First Int. Conf. on Medical Robotics and Computer Assisted Surgery, volume 26, pages 161--167, 1994.Google ScholarGoogle Scholar
  6. M. Gross, S. Würmlin, M. Näf, E. Lamboray, C. P. Spagno, A. M. Kunz, E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, K. Strehlke, A. V. Moere, and O. G. Staadt. blue-c: a spatially immersive display and 3D video portal for telepresence. ACM Trans. Graphics (Proc. SIGGRAPH), 22(3):819--827, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S.-R. Han, T. Yamasaki, and K. Aizawa. Time-varying mesh compression using an extended block matching algorithm. IEEE Trans. Circuits Syst. Video Techn., 17(11):1506--1518, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall, M. Bolas, and P. Debevec. Achieving eye contact in a one-to-many 3D video teleconferencing system. In ACM Trans. Graphics (Proc. SIGGRAPH), volume 28, page 64, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. T. Kanade, P. Rander, and P. Narayanan. Virtualized reality: Constructing virtual worlds from real scenes. IEEE Multimedia, 4(1):34--47, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. Kulik, A. Kunert, S. Beck, R. Reichel, R. Blach, A. Zink, and B. Froehlich. C1x6: a stereoscopic six-user display for co-located collaboration in shared virtual environments. ACM Trans. Graphics (Proc. SIGGRAPH Asia), 30(6):188, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. C. Kuster, J.-C. Bazin, A. C. Öztireli, T. Deng, T. Martin, T. Popa, and M. Gross. Spatio-temporal geometry fusion for multiple hybrid cameras using moving least squares surfaces. CGF (Eurographics), 33(2):1--10, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Lang, O. Wang, T. Aydin, A. Smolic, and M. Gross. Practical temporal consistency for image-based graphics applications. ACM Trans. Graphics (Proc. SIGGRAPH), 31(4):34, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. B. Lee and J. Hong. Transparent 3d display for augmented reality. In Photonics Asia, pages 855602--855602. Int. Soc. for Optics and Photonics, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  14. A. Maimone and H. Fuchs. Encumbrance-free telepresence system with real-time 3D capture and display using commodity depth cameras. In IEEE/ACM ISMAR, pages 137--146, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Maimone, X. Yang, N. Dierk, A. State, M. Dou, and H. Fuchs. General-purpose telepresence with head-worn optical see-through displays and projector-based lighting. In IEEE VR, pages 23--26, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  16. W. Matusik and H. Pfister. 3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. In ACM Trans. Graphics (Proc. SIGGRAPH), volume 23, pages 814--824, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. Nguyen and J. Canny. Multiview: improving trust in group video conferencing through spatial faithfulness. In Proceedings of the SIGCHI conf. on Human factors in computing systems, pages 1465--1474. ACM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. V. Nguyen, J. Lu, S. Zhao, D. Jones, and M. Do. Teleimmersive audio-visual communication using commodity hardware {applications corner}. IEEE Signal Processing Magazine, 31(6):118--136, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  19. T. Oskiper, M. Sizintsev, V. Branzoi, S. Samarasekera, and R. Kumar. Augmented reality binoculars. In IEEE/ACM ISMAR, pages 219--228, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  20. T. Peterka, R. Kooima, D. Sandin, A. Johnson, J. Leigh, and T. DeFanti. Advances in the dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system. IEEE TVCG, 14(3):487--499, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. N. Ranieri and M. Gross. Vision-based calibration of parallax barrier displays. In IS&T/SPIE Electronic Imaging, pages 90111D--90111D. Int. Society for Optics and Photonics, 2014.Google ScholarGoogle Scholar
  22. N. Ranieri, H. Seifert, and M. Gross. Transparent stereoscopic display and application. In IS&T/SPIE Electronic Imaging, pages 90110P--90110P. Int. Society for Optics and Photonics, 2014.Google ScholarGoogle Scholar
  23. C. Richardt, C. Stoll, N. A. Dodgson, H.-P. Seidel, and C. Theobalt. Coherent spatiotemporal filtering, upsampling and rendering of RGBZ videos. CGF (Eurographics), 31(2):247--256, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. O. Schreer, I. Feldmann, N. Atzpadin, P. Eisert, P. Kauff, and H. Belt. 3dpresence -a system concept for multi-user and multi-party immersive 3d videoconferencing. In 5th Europ. Conf. on Visual Media Production (CVMP), pages 1--8, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  25. J. Steinmeyer. Hiding the Elephant: How Magicians Invented the Impossible and Learned to Disappear. Carroll & Graf Publishers, 2003.Google ScholarGoogle Scholar
  26. T. Sun, S. Wu, and B. Cheng. 54.4: Novel transparent emissive display on optic-clear phosphor screen. In SID Symposium Digest of Technical Papers, volume 44, pages 755--758. Wiley Online Library, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  27. Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura. TransCAIP: a live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters. IEEE TVCG, 15(5):841--852, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. E. Tola, C. Zhang, Q. Cai, and Z. Zhang. Virtual view generation with a hybrid camera array. CVLAB-Report-2009-001 (EPFL), 2009.Google ScholarGoogle Scholar
  29. H. Towles, W. Chen, R. Yang, S. Kum, H. Fuchs, N. Kelshikar, J. Mulligan, K. Daniilidis, L. Holden, B. Zeleznik, A. Sadagic, and J. Lanier. 3D tele-collaboration over Internet2. In Int. Workshop on Immersive Telepresence, 2002.Google ScholarGoogle Scholar
  30. R. Vasudevan, G. Kurillo, E. Lobaton, T. Bernardin, O. Kreylos, R. Bajcsy, and K. Nahrstedt. High-quality visualization for geographically distributed 3-D teleimmersive applications. IEEE Trans. on Multimedia, 13(3):573--584, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. A. Vetro, T. Wiegand, and G. J. Sullivan. Overview of the stereo and multiview video coding extensions of the H.264/MPEG-4 AVC standard. Proc. of the IEEE, 99(4):626--642, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  32. T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra. Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Techn., 13(7):560--576, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. Yang, C. Kim, and S. Lee. Semi-regular representation and progressive compression of 3-d dynamic mesh sequences. IEEE TIP, 15(9):2531--2544, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Z. Zhang. Flexible camera calibration by viewing a plane from unknown orientations. In ICCV, volume 1, pages 666--673, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  35. M. Zwicker, H.-P. Pfister, J. Van Baar, and M. Gross. Surface splatting. In Proceedings of the 28th annual conf. on Computer graphics and interactive techniques, pages 371--378. ACM, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  1. An Immersive Bidirectional System for Life-size 3D Communication

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      CASA '16: Proceedings of the 29th International Conference on Computer Animation and Social Agents
      May 2016
      200 pages
      ISBN:9781450347457
      DOI:10.1145/2915926

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 23 May 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate18of110submissions,16%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader