skip to main content
10.1145/2934872.2934911acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Free access

ProjecToR: Agile Reconfigurable Data Center Interconnect

Published: 22 August 2016 Publication History

Abstract

We explore a novel, free-space optics based approach for building data center interconnects. It uses a digital micromirror device (DMD) and mirror assembly combination as a transmitter and a photodetector on top of the rack as a receiver (Figure 1). Our approach enables all pairs of racks to establish direct links, and we can reconfigure such links (i.e., connect different rack pairs) within 12 us. To carry traffic from a source to a destination rack, transmitters and receivers in our interconnect can be dynamically linked in millions of ways. We develop topology construction and routing methods to exploit this flexibility, including a flow scheduling algorithm that is a constant factor approximation to the offline optimal solution. Experiments with a small prototype point to the feasibility of our approach. Simulations using realistic data center workloads show that, compared to the conventional folded-Clos interconnect, our approach can improve mean flow completion time by 30-95% and reduce cost by 25-40%.

Supplementary Material

MP4 File (p216.mp4)

References

[1]
Collimation lens. http://www.thorlabs.us/thorproduct.cfm?partnumber=CFS18-1550-APC.
[2]
DLP discovery 4100 development kit. http://www.ti.com/tool/dlpd4x00kit.
[3]
Multirate 80km SFP+ optical transceiver. https://www.finisar.com/optical-transceivers/ftlx1871m3bcl.
[4]
Optical table with active isolator legs. http://www.thorlabs.us/newgrouppage9.cfm?objectgroup_id=5930.
[5]
ProjecToR home page. http://research.microsoft.com/en-us/projects/projector.
[6]
SFP+ 10km reach transceiver. http://www.robofiber.com/content/datasheets/SFP-1010-LR-datasheet.pdf.
[7]
Sr 300m multi-mode 10g transceiver. http://www.robofiber.com/sfp-1000-sr.
[8]
Texas Instruments DLP technology overview. http://www.ti.com/lsds/ti/analog/dlp/overview.page.
[9]
Texas instruments store. https://store.ti.com/Search.aspx?k=dlp&pt=-1.
[10]
M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network architecture. SIGCOMM'08, pages 63–74.
[11]
M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker. pFabric: Minimal near-optimal datacenter transport. SIGCOMM'13, pages 435–446.
[12]
L. Benjamin. DMD 101: Introduction to digital micromirror device (DMD) technology. Texas Instruments, Oct. 2013.
[13]
D. Birkhoff. Tres observaciones sobre el algebra lineal. Universidad Nacional de Tucuman Revista, Serie A, 5:147–151, 1946.
[14]
N. Devanur, J. Kulkarni, G. Ranade, M. Ghobadi, R. Mahajan, and A. Phanishayee. Stable matching algorithm for an agile reconfigurable data center interconnect. Technical Report MSR-TR-2016-34, 2016.
[15]
J. Edmonds and E. L. Johnson. Matching, Euler tours and the chinese postman. Mathematical Programming, pages 88–124, 1973.
[16]
N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat. Helios: A hybrid electrical/optical switch architecture for modular data centers. SIGCOMM'10, pages 339–350.
[17]
D. Gale and L. S. Shapley. College admissions and the stability of marriage. The American Mathematical Monthly, 69(1):9–15, 1962.
[18]
A. Georgiou, J. Christmas, J. Moore, A. Jeziorska-Chapman, A. Davey, N. Collings, and W. A. Crossland. Liquid crystal over silicon device characteristics for holographic projection of high-definition television images. Appl. Opt. 2008.
[19]
R. W. Gerchberg and W. O. Saxton. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 237, 1972.
[20]
M. Ghobadi, R. Mahajan, A. Phanishayee, P.-A. Blanche, H. Rastegarfar, M. Glick, and D. Kilper. Design of mirror assembly for an agile reconfigurable data center interconnect. Technical Report MSR-TR-2016-33, 2016.
[21]
A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A scalable and flexible data center network. SIGCOMM'09, pages 51–62.
[22]
N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin, H. Shah, and A. Tanwer. Firefly: A reconfigurable wireless data center fabric using free-space optics. SIGCOMM'14, pages 319–330.
[23]
S. Kandula, J. Padhye, and P. Bahl. Flyways to de-congest data center networks. HotNets'09, 2009.
[24]
I. I. Kim, B. McArthur, and E. J. Korevaar. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. Proc. SPIE, 4214:26–37, 2001.
[25]
H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G. M. Voelker, G. Papen, A. C. Snoeren, and G. Porter. Circuit switching under the radar with REACToR. NSDI'14, pages 1–15.
[26]
H. Liu, M. K. Mukerjee, C. Li, N. Feltman, G. Papen, S. Savage, S. Seshan, G. M. Voelker, D. G. Andersen, M. Kaminsky, G. Porter, and A. C. Snoeren. Scheduling techniques for hybrid circuit/packet networks. CoNext'15.
[27]
Y. J. Liu, P. X. Gao, B. Wong, and S. Keshav. Quartz: A new design element for low-latency dcns. SIGCOMM'14, pages 283–294.
[28]
B. Lynn, P.-A. Blanche, A. Miles, J. Wissinger, D. Carothers, L. LaComb, R. Norwood, and N. Peyghambarian. Design and preliminary implementation of an $N ×N$ diffractive all-optical fiber optic switch. Journal of Lightwave Technology, 31(24):4016–4021, Dec 2013.
[29]
N. McKeown. The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM Trans. Netw., 7(2):188–201, Apr. 1999.
[30]
N. Mckeown, B. Prabhakar, and M. Zhu. Matching output queueing with a combined input output queued switch. IEEE Journal on Selected Areas in Communications, pages 1030–1039, 1999.
[31]
W. Mellette and J. E. Ford. Scaling limits of free-space tilt mirror mems switches for data center networks. Optical Fiber Communication Conference, page M2B.1, 2015.
[32]
A. Miles, B. Lynn, P. Blanche, J. Wissinger, D. Carothers, A. LaComb Jr., R. Norwood, and N. Peyghambarian. 7$×$7 DMD-based diffractive fiber switch at 1550 nm. Optics Communications, 334:41–45, Jan 2015.
[33]
G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat. Integrating microsecond circuit switching into the data center. SIGCOMM'13, pages 447–458.
[34]
Y. K. Rabinovitz. Digital Light Processing Technology (DLP) Beyond any conventional projection. http://www.opli.net/magazine/eo/2011/news/dlp_tech.aspx, 2011.
[35]
A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the social network's (datacenter) network. SIGCOMM'15, pages 123–137.
[36]
A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish: Networking data centers randomly. NSDI'12, pages 225–238.
[37]
A. Singla, A. Singh, and Y. Chen. OSA: An optical switching architecture for data center networks with unprecedented flexibility. NSDI'12, pages 239–252.
[38]
G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. E. Ng, M. Kozuch, and M. Ryan. c-Through: Part-time optics in data centers. SIGCOMM'10, pages 327–338.
[39]
B.-W. Yoo, M. Megens, T. Sun, W. Yang, C. J. Chang-Hasnain, D. A. Horsley, and M. C. Wu. A 32$×$32 optical phased array using polysilicon sub-wavelength high-contrast-grating mirrors. Opt. Express, 22(16):19029–19039, Aug 2014.
[40]
X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao, and H. Zheng. Mirror mirror on the ceiling: Flexible wireless links for data centers. SIGCOMM'12, pages 443–454.

Cited By

View all
  • (2025)Analyzing the Benefits of Optical Topology Programming for Mitigating Link-Flood DDoS AttacksIEEE Transactions on Dependable and Secure Computing10.1109/TDSC.2024.339118822:1(146-163)Online publication date: Jan-2025
  • (2025)Learning to route and schedule links in reconfigurable networksICT Express10.1016/j.icte.2024.07.00111:1(7-12)Online publication date: Feb-2025
  • (2024)Optical switching for data centers and advanced computing systems [Invited]Journal of Optical Communications and Networking10.1364/JOCN.53431717:1(A87)Online publication date: 9-Dec-2024
  • Show More Cited By

Index Terms

  1. ProjecToR: Agile Reconfigurable Data Center Interconnect

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGCOMM '16: Proceedings of the 2016 ACM SIGCOMM Conference
    August 2016
    645 pages
    ISBN:9781450341936
    DOI:10.1145/2934872
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 August 2016

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Data Centers
    2. Free-Space Optics
    3. Reconfigurability

    Qualifiers

    • Research-article

    Conference

    SIGCOMM '16
    Sponsor:
    SIGCOMM '16: ACM SIGCOMM 2016 Conference
    August 22 - 26, 2016
    Florianopolis, Brazil

    Acceptance Rates

    SIGCOMM '16 Paper Acceptance Rate 39 of 231 submissions, 17%;
    Overall Acceptance Rate 462 of 3,389 submissions, 14%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)440
    • Downloads (Last 6 weeks)80
    Reflects downloads up to 02 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Analyzing the Benefits of Optical Topology Programming for Mitigating Link-Flood DDoS AttacksIEEE Transactions on Dependable and Secure Computing10.1109/TDSC.2024.339118822:1(146-163)Online publication date: Jan-2025
    • (2025)Learning to route and schedule links in reconfigurable networksICT Express10.1016/j.icte.2024.07.00111:1(7-12)Online publication date: Feb-2025
    • (2024)Optical switching for data centers and advanced computing systems [Invited]Journal of Optical Communications and Networking10.1364/JOCN.53431717:1(A87)Online publication date: 9-Dec-2024
    • (2024)Semi-Oblivious Reconfigurable Datacenter NetworksProceedings of the 23rd ACM Workshop on Hot Topics in Networks10.1145/3696348.3696860(150-158)Online publication date: 18-Nov-2024
    • (2024)A case for server-scale photonic connectivityProceedings of the 23rd ACM Workshop on Hot Topics in Networks10.1145/3696348.3696856(290-299)Online publication date: 18-Nov-2024
    • (2024)POSTER: Opportunistic Credit-Based Transport for Reconfigurable Data Center Networks with TidalProceedings of the ACM SIGCOMM 2024 Conference: Posters and Demos10.1145/3672202.3673714(4-6)Online publication date: 4-Aug-2024
    • (2024)DEMO: An Open Research Framework for Optical Data Center NetworksProceedings of the ACM SIGCOMM 2024 Conference: Posters and Demos10.1145/3672202.3673712(86-88)Online publication date: 4-Aug-2024
    • (2024)Rethinking Transport Protocols for Reconfigurable Data Centers: An Empirical StudyProceedings of the 1st SIGCOMM Workshop on Hot Topics in Optical Technologies and Applications in Networking10.1145/3672201.3674120(7-13)Online publication date: 4-Aug-2024
    • (2024)Realizing RotorNet: Toward Practical Microsecond Scale Optical NetworkingProceedings of the ACM SIGCOMM 2024 Conference10.1145/3651890.3672273(392-414)Online publication date: 4-Aug-2024
    • (2024)Shale: A Practical, Scalable Oblivious Reconfigurable NetworkProceedings of the ACM SIGCOMM 2024 Conference10.1145/3651890.3672248(449-464)Online publication date: 4-Aug-2024
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media