skip to main content
10.1145/2939672.2939848acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Diversified Temporal Subgraph Pattern Mining

Published: 13 August 2016 Publication History

Abstract

Many graphs in real-world applications, such as telecommunications networks, social-interaction graphs and co-authorship graphs, contain temporal information. However, existing graph mining algorithms fail to exploit these temporal information and the resulting subgraph patterns do not contain any temporal attribute. In this paper, we study the problem of mining a set of diversified temporal subgraph patterns from a temporal graph, where each subgraph is associated with the time interval that the pattern spans. This problem motivates important applications such as finding social trends in social networks, or detecting temporal hotspots in telecommunications networks. We propose a divide-and-conquer algorithm along with effective pruning techniques, and our approach runs 2 to 3 orders of magnitude faster than a baseline algorithm and obtains high-quality temporal subgraph patterns in real temporal graphs.

References

[1]
J. Abello, M. G. C. Resende, and S. Sudarsky. Massive quasi-clique detection. In LATIN, pages 598--612, 2002.
[2]
G. Ausiello, N. Boria, A. Giannakos, G. Lucarelli, and V. T. Paschos. Online maximum k-coverage. In Fundamentals of Computation Theory, pages 181--192. Springer, 2011.
[3]
V. Batagelj and M. Zaversnik. An O(m) algorithm for cores decomposition of networks. CoRR, cs.DS/0310049, 2003.
[4]
M. Bazzi, M. A. Porter, S. Williams, M. McDonald, D. J. Fenn, and S. D. Howison. Community detection in temporal multilayer networks, with an application to correlation networks. Multiscale Modeling & Simulation, 14(1):1--41, 2016.
[5]
M. Benkert, J. Gudmundsson, F. Hübner, and T. Wolle. Reporting flock patterns. In ESA, pages 660--671, 2006.
[6]
B. Boden, S. Günnemann, H. Hoffmann, and T. Seidl. Mining coherent subgraphs in multi-layer graphs with edge labels. In KDD, pages 1258--1266. ACM, 2012.
[7]
C. Bron and J. Kerbosch. Finding all cliques of an undirected graph (algorithm 457). Commun. ACM, 16(9):575--576, 1973.
[8]
A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed Systems, 27(5):387--408, 2012.
[9]
G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm and applications. SIAM J. Comput., 18(1):30--55, 1989.
[10]
M.-G. Gong, L.-J. Zhang, J.-J. Ma, and L.-C. Jiao. Community detection in dynamic social networks based on multiobjective immune algorithm. Journal of Computer Science and Technology, 27(3):455--467, 2012.
[11]
J. Gudmundsson and M. J. van Kreveld. Computing longest duration flocks in trajectory data. In GIS, pages 35--42, 2006.
[12]
P. Holme and J. Saramäki. Temporal networks. CoRR, abs/1108.1780, 2011.
[13]
H. Jeung, H. T. Shen, and X. Zhou. Convoy queries in spatio-temporal databases. In ICDE, pages 1457--1459, 2008.
[14]
S. Khuller and B. Saha. On finding dense subgraphs. In ICALP, pages 597--608, 2009.
[15]
G. Kossinets, J. M. Kleinberg, and D. J. Watts. The structure of information pathways in a social communication network. In KDD, pages 435--443, 2008.
[16]
V. Kostakos. Temporal graphs. Physica A: Statistical Mechanics and its Applications, 388(6):1007--1023, 2009.
[17]
V. E. Lee, N. Ruan, R. Jin, and C. C. Aggarwal. A survey of algorithms for dense subgraph discovery. In Managing and Mining Graph Data, pages 303--336. 2010.
[18]
Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal moving object clusters. PVLDB, 3(1):723--734, 2010.
[19]
Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng. Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. In WWW, pages 685--694. ACM, 2008.
[20]
G. Liu and L. Wong. Effective pruning techniques for mining quasi-cliques. In PKDD, pages 33--49, 2008.
[21]
J. Mugan, E. McDermid, A. McGrew, and L. Hitt. Identifying groups of interest through temporal analysis and event response monitoring. In Intelligence and Security Informatics (ISI), 2013 IEEE International Conference on, pages 185--190. IEEE, 2013.
[22]
M. Müller-Hannemann, F. Schulz, D. Wagner, and C. D. Zaroliagis. Timetable information: Models and algorithms. In ATMOS, pages 67--90, 2004.
[23]
G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing submodular set functions-i. Mathematical Programming, 14(1):265--294, 1978.
[24]
R. K. Pan and J. Saramäki. Path lengths, correlations, and centrality in temporal networks. Phys. Rev. E, 84:016105, 2011.
[25]
P. M. Pardalos and S. Rebennack. Computational challenges with cliques, quasi-cliques and clique partitions in graphs. In Experimental Algorithms, pages 13--22. Springer, 2010.
[26]
J. Pei, D. Jiang, and A. Zhang. On mining cross-graph quasi-cliques. In KDD, pages 228--238, 2005.
[27]
N. Santoro, W. Quattrociocchi, P. Flocchini, A. Casteigts, and F. Amblard. Time-varying graphs and social network analysis: Temporal indicators and metrics. CoRR, abs/1102.0629, 2011.
[28]
J. Tang, M. Musolesi, C. Mascolo, and V. Latora. Temporal distance metrics for social network analysis. In WOSN, pages 31--36, 2009.
[29]
J. Tang, M. Musolesi, C. Mascolo, and V. Latora. Characterising temporal distance and reachability in mobile and online social networks. Computer Communication Review, 40(1):118--124, 2010.
[30]
C. E. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. A. Tsiarli. Denser than the densest subgraph: extracting optimal quasi-cliques with quality guarantees. In KDD, pages 104--112, 2013.
[31]
J. Wang and J. Cheng. Truss decomposition in massive networks. PVLDB, 5(9):812--823, 2012.
[32]
H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu. Path problems in temporal graphs. PVLDB, 7(9):721--732, 2014.
[33]
J. Xie, M. Chen, and B. K. Szymanski. Labelrankt: Incremental community detection in dynamic networks via label propagation. In Proceedings of the Workshop on Dynamic Networks Management and Mining, pages 25--32. ACM, 2013.
[34]
B.-M. B. Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci., 14(2):267--285, 2003.
[35]
L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang. Diversified top-k clique search. In ICDE, pages 387--398, 2015.

Cited By

View all
  • (2024)Efficient Maximal Frequent Group Enumeration in Temporal Bipartite GraphsProceedings of the VLDB Endowment10.14778/3681954.368199717:11(3243-3255)Online publication date: 30-Aug-2024
  • (2024)On Reporting Durable Patterns in Temporal Proximity GraphsProceedings of the ACM on Management of Data10.1145/36511442:2(1-26)Online publication date: 14-May-2024
  • (2024)Efficient Exact and Approximate Betweenness Centrality Computation for Temporal GraphsProceedings of the ACM Web Conference 202410.1145/3589334.3645438(2395-2406)Online publication date: 13-May-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
August 2016
2176 pages
ISBN:9781450342322
DOI:10.1145/2939672
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 August 2016

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. dense subgraph mining
  2. quasi-clique
  3. temporal graph

Qualifiers

  • Research-article

Funding Sources

  • Key Projects of Fundamental Research Program of Shanghai Municipal Commission of Science and Technology
  • Hong Kong GRF

Conference

KDD '16
Sponsor:

Acceptance Rates

KDD '16 Paper Acceptance Rate 66 of 1,115 submissions, 6%;
Overall Acceptance Rate 1,133 of 8,635 submissions, 13%

Upcoming Conference

KDD '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)41
  • Downloads (Last 6 weeks)6
Reflects downloads up to 01 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Efficient Maximal Frequent Group Enumeration in Temporal Bipartite GraphsProceedings of the VLDB Endowment10.14778/3681954.368199717:11(3243-3255)Online publication date: 30-Aug-2024
  • (2024)On Reporting Durable Patterns in Temporal Proximity GraphsProceedings of the ACM on Management of Data10.1145/36511442:2(1-26)Online publication date: 14-May-2024
  • (2024)Efficient Exact and Approximate Betweenness Centrality Computation for Temporal GraphsProceedings of the ACM Web Conference 202410.1145/3589334.3645438(2395-2406)Online publication date: 13-May-2024
  • (2024)TED$^+$: Towards Discovering Top-k Edge-Diversified Patterns in a Graph DatabaseIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2023.3312566(1-14)Online publication date: 2024
  • (2024)Maximizing $(k,L)$-Core With Edge Augmentation in Multilayer GraphsIEEE Transactions on Computational Social Systems10.1109/TCSS.2023.333209111:3(3931-3943)Online publication date: Jun-2024
  • (2024)Efficient Maximal Temporal Plex Enumeration2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00240(3098-3110)Online publication date: 13-May-2024
  • (2023)Discovering Association Rules with Graph Patterns in Temporal NetworksTsinghua Science and Technology10.26599/TST.2021.901009028:2(344-359)Online publication date: Apr-2023
  • (2023)An Efficient Dynamic Programming Algorithm for Finding Group Steiner Trees in Temporal GraphsInternational Journal of Intelligent Systems10.1155/2023/19741612023(1-20)Online publication date: 21-Nov-2023
  • (2023)Fast Maximal Quasi-clique Enumeration: A Pruning and Branching Co-Design ApproachProceedings of the ACM on Management of Data10.1145/36173311:3(1-26)Online publication date: 13-Nov-2023
  • (2023)On Querying Connected Components in Large Temporal GraphsProceedings of the ACM on Management of Data10.1145/35893151:2(1-27)Online publication date: 20-Jun-2023
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media