skip to main content
10.1145/2971648.2971753acmconferencesArticle/Chapter ViewAbstractPublication PagesubicompConference Proceedingsconference-collections
research-article
Public Access

mSieve: differential behavioral privacy in time series of mobile sensor data

Published:12 September 2016Publication History

ABSTRACT

Differential privacy concepts have been successfully used to protect anonymity of individuals in population-scale analysis. Sharing of mobile sensor data, especially physiological data, raise different privacy challenges, that of protecting private behaviors that can be revealed from time series of sensor data. Existing privacy mechanisms rely on noise addition and data perturbation. But the accuracy requirement on inferences drawn from physiological data, together with well-established limits within which these data values occur, render traditional privacy mechanisms inapplicable. In this work, we define a new behavioral privacy metric based on differential privacy and propose a novel data substitution mechanism to protect behavioral privacy. We evaluate the efficacy of our scheme using 660 hours of ECG, respiration, and activity data collected from 43 participants and demonstrate that it is possible to retain meaningful utility, in terms of inference accuracy (90%), while simultaneously preserving the privacy of sensitive behaviors.

References

  1. Agrawal, D., and Aggarwal, C. C. On the design and quantification of privacy preserving data mining algorithms. In Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, ACM (2001), 247--255. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Agrawal, R., and Srikant, R. Privacy-preserving data mining. In ACM Sigmod Record, vol. 29, ACM (2000), 439--450. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ali, A. A., Hossain, S. M., Hovsepian, K., Rahman, M. M., Plarre, K., and Kumar, S. mpuff: automated detection of cigarette smoking puffs from respiration measurements. In Proceedings of the 11th international conference on Information Processing in Sensor Networks, ACM (2012), 269--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Atallah, L., Lo, B., King, R., and Yang, G.-Z. Sensor placement for activity detection using wearable accelerometers. In 2010 International Conference on Body Sensor Networks, IEEE (2010), 24--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bao, L., and Intille, S. S. Activity recognition from user-annotated acceleration data. In Pervasive computing. Springer, 2004, 1--17.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bhaskar, R., Laxman, S., Smith, A., and Thakurta, A. Discovering frequent patterns in sensitive data. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM (2010), 503--512. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Biel, L., Pettersson, O., Philipson, L., and Wide, P. Ecg analysis: a new approach in human identification. IEEE Transactions on Instrumentation and Measurement 50, 3 (2001), 808--812.Google ScholarGoogle ScholarCross RefCross Ref
  8. Bindschaedler, V., and Shokri, R. Synthesizing plausible privacy-preserving location traces. In 2016 IEEE Symposium on Security and Privacy, IEEE (2016).Google ScholarGoogle ScholarCross RefCross Ref
  9. Chakraborty, S. Balancing Behavioral Privacy and Information Utility in Sensory Data Flows. PhD thesis, University of California, Los Angeles, 2014.Google ScholarGoogle Scholar
  10. Chakraborty, S., Raghavan, K. R., Johnson, M. P., and Srivastava, M. B. A framework for context-aware privacy of sensor data on mobile systems. In Proceedings of the 14th Workshop on Mobile Computing Systems and Applications, ACM (2013), 11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chakraborty, S., Shen, C., Raghavan, K. R., Shoukry, Y., Millar, M., and Srivastava, M. ipShield: A Framework For Enforcing Context-Aware Privacy. In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14) (2014), 143--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chen, R., Mohammed, N., Fung, B. C., Desai, B. C., and Xiong, L. Publishing set-valued data via differential privacy. Proceedings of the VLDB Endowment 4, 11 (2011), 1087--1098.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Clifford, G. D., Azuaje, F., and McSharry, P. Advanced methods and tools for ECG data analysis. Artech House, Inc., 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., and Zhu, M. Y. Tools for privacy preserving distributed data mining. ACM Sigkdd Explorations Newsletter 4, 2 (2002), 28--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Dinur, I., and Nissim, K. Revealing information while preserving privacy. In Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, ACM (2003), 202--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Du, W., and Atallah, M. J. Secure multi-party computation problems and their applications: a review and open problems. In Proceedings of the 2001 workshop on New security paradigms, ACM (2001), 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Dwork, C. Differential privacy: A survey of results. In Theory and applications of models of computation. Springer, 2008, 1--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Dwork, C., McSherry, F., Nissim, K., and Smith, A. Calibrating noise to sensitivity in private data analysis. In Theory of cryptography. Springer, 2006, 265--284. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Dwork, C., Naor, M., Reingold, O., Rothblum, G. N., and Vadhan, S. On the complexity of differentially private data release: efficient algorithms and hardness results. In Proceedings of the forty-first annual ACM symposium on Theory of computing, ACM (2009), 381--390. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Evfimievski, A., Srikant, R., Agrawal, R., and Gehrke, J. Privacy preserving mining of association rules. Information Systems 29, 4 (2004), 343--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Friedman, A., and Schuster, A. Data mining with differential privacy. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM (2010), 493--502. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Götz, M., Nath, S., and Gehrke, J. Maskit: Privately releasing user context streams for personalized mobile applications. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, SIGMOD '12 (2012), 289--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Hay, M., Rastogi, V., Miklau, G., and Suciu, D. Boosting the accuracy of differentially private histograms through consistency. Proceedings of the VLDB Endowment 3, 1-2 (2010), 1021--1032. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. He, Y., Barman, S., Wang, D., and Naughton, J. F. On the complexity of privacy-preserving complex event processing. In Proceedings of the Thirtieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS '11 (2011), 165--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Hossain, S. M., Ali, A. A., Rahman, M. M., Ertin, E., Epstein, D., Kennedy, A., Preston, K., Umbricht, A., Chen, Y., and Kumar, S. Identifying drug (cocaine) intake events from acute physiological response in the presence of free-living physical activity. In Proceedings of the 13th international symposium on Information processing in sensor networks, IEEE Press (2014), 71--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Hovsepian, K., al'Absi, M., Ertin, E., Kamarck, T., Nakajima, M., and Kumar, S. cstress: towards a gold standard for continuous stress assessment in the mobile environment. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, ACM (2015), 493--504. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Li, N., Li, T., and Venkatasubramanian, S. t-closeness: Privacy beyond k-anonymity and l-diversity. In Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on, IEEE (2007), 106--115.Google ScholarGoogle ScholarCross RefCross Ref
  28. Li, N., Qardaji, W. H., and Su, D. Provably private data anonymization: Or, k-anonymity meets differential privacy. Arxiv preprint (2011).Google ScholarGoogle Scholar
  29. Lindell, Y., and Pinkas, B. Privacy preserving data mining. In Advances in CryptologyCRYPTO 2000, Springer (2000), 36--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Machanavajjhala, A., Kifer, D., Gehrke, J., and Venkitasubramaniam, M. l-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data (TKDD) 1, 1 (2007), 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Pagani, M., Montano, N., Porta, A., Malliani, A., Abboud, F. M., Birkett, C., and Somers, V. K. Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation 95, 6 (1997), 1441--1448.Google ScholarGoogle ScholarCross RefCross Ref
  32. Parate, A., Chiu, M.-C., Chadowitz, C., Ganesan, D., and Kalogerakis, E. Risq: Recognizing smoking gestures with inertial sensors on a wristband. In Proceedings of the 12th annual international conference on Mobile systems, applications, and services, ACM (2014), 149--161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Pinkas, B. Cryptographic techniques for privacy-preserving data mining. ACM SIGKDD Explorations Newsletter 4, 2 (2002), 12--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Plarre, K., Raij, A., Hossain, S. M., Ali, A. A., Nakajima, M., al'Absi, M., Ertin, E., Kamarck, T., Kumar, S., Scott, M., et al. Continuous inference of psychological stress from sensory measurements collected in the natural environment. In Information Processing in Sensor Networks (IPSN), 2011 10th International Conference on, IEEE (2011), 97--108.Google ScholarGoogle Scholar
  35. Rahman, M., Ali, A. A., Plarre, K., Absi, M., Ertin, E., and Kumar, S. mconverse : Inferring conversation episodes from respiratory measurements collected in the field. Wireless Health (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Rahman, M. M., Bari, R., Ali, A. A., Sharmin, M., Raij, A., Hovsepian, K., Hossain, S. M., Ertin, E., Kennedy, A., Epstein, D. H., et al. Are we there yet?: Feasibility of continuous stress assessment via wireless physiological sensors. In Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, ACM (2014), 479--488. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Roth, A., and Roughgarden, T. Interactive privacy via the median mechanism. In Proceedings of the forty-second ACM symposium on Theory of computing, ACM (2010), 765--774. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Saleheen, N., Ali, A. A., Hossain, S. M., Sarker, H., Chatterjee, S., Marlin, B., Ertin, E., al'Absi, M., and Kumar, S. puffmarker: a multi-sensor approach for pinpointing the timing of first lapse in smoking cessation. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, ACM (2015), 999--1010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Sweeney, L. k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 05 (2002), 557--570. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Thomaz, E., Essa, I., and Abowd, G. D. A practical approach for recognizing eating moments with wrist-mounted inertial sensing. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, ACM (2015), 1029--1040. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Vaidya, J., and Clifton, C. Privacy preserving association rule mining in vertically partitioned data. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM (2002), 639--644. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Xiao, Y., Xiong, L., and Yuan, C. Differentially private data release through multidimensional partitioning. In Secure Data Management. Springer, 2010, 150--168. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. mSieve: differential behavioral privacy in time series of mobile sensor data

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UbiComp '16: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing
      September 2016
      1288 pages
      ISBN:9781450344616
      DOI:10.1145/2971648

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 September 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      UbiComp '16 Paper Acceptance Rate101of389submissions,26%Overall Acceptance Rate764of2,912submissions,26%

      Upcoming Conference

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader