skip to main content
research-article

Sphere-meshes for real-time hand modeling and tracking

Published:05 December 2016Publication History
Skip Abstract Section

Abstract

Modern systems for real-time hand tracking rely on a combination of discriminative and generative approaches to robustly recover hand poses. Generative approaches require the specification of a geometric model. In this paper, we propose a the use of sphere-meshes as a novel geometric representation for real-time generative hand tracking. How tightly this model fits a specific user heavily affects tracking precision. We derive an optimization to non-rigidly deform a template model to fit the user data in a number of poses. This optimization jointly captures the user's static and dynamic hand geometry, thus facilitating high-precision registration. At the same time, the limited number of primitives in the tracking template allows us to retain excellent computational performance. We confirm this by embedding our models in an open source real-time registration algorithm to obtain a tracker steadily running at 60Hz. We demonstrate the effectiveness of our solution by qualitatively and quantitatively evaluating tracking precision on a variety of complex motions. We show that the improved tracking accuracy at high frame-rate enables stable tracking of extended and complex motion sequences without the need for per-frame re-initialization. To enable further research in the area of high-precision hand tracking, we publicly release source code and evaluation datasets.

Skip Supplemental Material Section

Supplemental Material

References

  1. Albrecht, I., Haber, J., and Seidel, H.-P. 2003. Construction and animation of anatomically based human hand models. In Proc. of the Symposium on Computer Animation (SCA). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ballan, L., Taneja, A., Gall, J., Van Gool, L., and Pollefeys, M. 2012. Motion capture of hands in action using discriminative salient points. In Proc. of the European Conf. on Computer Vision (ECCV). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bloomenthal, J., and Shoemake, K. 1991. Convolution surfaces. In Computer Graphics (Proc. SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bloomenthal, J., Bajaj, C., Blinn, J., Cani, M.-P., Rockwood, A., Wyvill, B., and Wyvill, G. 1997. Introduction to Implicit Surfaces. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Lévy, B. 2010. Polygon Mesh Processing. A. K. Peters.Google ScholarGoogle Scholar
  6. Bouaziz, S., Wang, Y., and Pauly, M. 2013. Online modeling for realtime facial animation. ACM Transactions on Graphics (Proc. of SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Buss, S. R. 2004. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. IEEE Journal of Robotics and Automation.Google ScholarGoogle Scholar
  8. de La Gorce, M., Fleet, D. J., and Paragios, N. 2011. Model-based 3D hand pose estimation from monocular video. Pattern Analysis and Machine Intelligence (PAMI). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dipietro, L., Sabatini, A. M., and Dario, P. 2008. A survey of glove-based systems and their applications. IEEE Transactions on Systems, Man, and Cybernetics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Erol, A., Bebis, G., Nicolescu, M., Boyle, R. D., and Twombly, X. 2007. Vision Based Hand Pose Estimation: A Review. Computer Vision Image Understanding. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fleishman, S., Kliger, M., Lerner, A., and Kutliroff, G. 2015. Icpik: Inverse kinematics based articulated-icp. In Proc. of the IEEE CVPR Workshops (HANDS).Google ScholarGoogle Scholar
  12. Innmann, M., Zollhöfer, M., Niessner, M., Theobalt, C., and Stamminger, M. 2016. Volumedeform: Real-time volumetric non-rigid reconstruction. In Proc. of the European Conf. on Computer Vision (ECCV).Google ScholarGoogle Scholar
  13. Keskin, C., Kiraç, F., Kara, Y. E., and Akarun, L. 2012. Hand pose estimation and hand shape classification using multilayered randomized decision forests. In Proc. of the European Conf. on Computer Vision (ECCV). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Khamis, S., Taylor, J., Shotton, J., Keskin, C., Izadi, S., and Fitzgibbon, A. 2015. Learning an efficient model of hand shape variation from depth images. Proc. of Comp. Vision and Pattern Recog. (CVPR).Google ScholarGoogle Scholar
  15. Krupka, E., Vinnikov, A., Klein, B., Bar Hillel, A., Freedman, D., and Stachniak, S. 2014. Discriminative ferns ensemble for hand pose recognition. In Proc. of Comp. Vision and Pattern Recog. (CVPR). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Loper, M. M., and Black, M. J. 2014. OpenDR: An approximate differentiable renderer. In Proc. of the European Conf. on Computer Vision (ECCV).Google ScholarGoogle Scholar
  17. Makris, A., and Argyros, A. A. 2015. Model-based 3d hand tracking with on-line shape adaptation. In Proc. of British Machine Vision Conference (BMVC).Google ScholarGoogle Scholar
  18. Melax, S., Keselman, L., and Orsten, S. 2013. Dynamics based 3d skeletal hand tracking. In Proc. of Graphics Interface. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. 2011. Kinectfusion: Real-time dense surface mapping and tracking. In IEEE International Symposium on Mixed and Augmented Reality (ISMAR). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Newcombe, R. A., Fox, D., and Seitz, S. M. 2015. Dynamicfusion: Reconstruction and tracking of non-rigid scenes in real-time. Proc. of Comp. Vision and Pattern Recog. (CVPR).Google ScholarGoogle Scholar
  21. Oberweger, M., Wohlhart, P., and Lepetit, V. 2015. Training a Feedback Loop for Hand Pose Estimation. In Proc. of the Intern. Conf. on Computer Vision (ICCV). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Oikonomidis, I., Kyriazis, N., and Argyros, A. A. 2011. Efficient model-based 3D tracking of hand articulation using kinect. In Proc. of British Machine Vision Conference (BMVC).Google ScholarGoogle Scholar
  23. Olson, M., and Zhang, H. 2006. Silhouette extraction in hough space. Computer Graphics Forum (Proc. of EuroGraphics).Google ScholarGoogle Scholar
  24. Plankers, R., and Fua, P. 2003. Articulated soft objects for multi-view shape and motion capture. Pattern Analysis and Machine Intelligence (PAMI). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Qian, C., Sun, X., Wei, Y., Tang, X., and Sun, J. 2014. Realtime and robust hand tracking from depth. In Proc. of Comp. Vision and Pattern Recog. (CVPR). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Rehg, J. M., and Kanade, T. 1994. Visual tracking of high dof articulated structures: An application to human hand tracking. In Proc. of the European Conf. on Computer Vision (ECCV). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Rhee, T., Neumann, U., and Lewis, J. P. 2006. Human hand modeling from surface anatomy. In Proc. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (i3D). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Schroder, M., Maycock, J., Ritter, H., and Botsch, M. 2014. Real-time hand tracking using synergistic inverse kinematics. In Proc. of the Intern. Conf. on Robotics and Automation (ICRA).Google ScholarGoogle Scholar
  29. Sharp, T., Keskin, C., Robertson, D., Taylor, J., Shotton, J., Leichter, D. K. C. R. I., Wei, A. V. Y., Krupka, D. F. P. K. E., Fitzgibbon, A., and Izadi, S. 2015. Accurate, robust, and flexible real-time hand tracking. In Proc. of ACM Special Interest Group on Computer-Human Interaction (CHI). Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sridhar, S., Oulasvirta, A., and Theobalt, C. 2013. Interactive markerless articulated hand motion tracking using RGB and depth data. In Proc. of the Intern. Conf. on Computer Vision (ICCV). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sridhar, S., Rhodin, H., Seidel, H.-P., Oulasvirta, A., and Theobalt, C. 2014. Real-time hand tracking using a sum of anisotropic gaussians model. In Proc. International Conference on 3D Vision (3DV). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sridhar, S., Mueller, F., Oulasvirta, A., and Theobalt, C. 2015. Fast and robust hand tracking using detection-guided optimization. In Proc. of Comp. Vision and Pattern Recog. (CVPR).Google ScholarGoogle Scholar
  33. Sun, X., Wei, Y., Liang, S., Tang, X., and Sun, J. 2015. Cascaded hand pose regression. In Proc. of Comp. Vision and Pattern Recog. (CVPR).Google ScholarGoogle Scholar
  34. Tagliasacchi, A., and Li, H. 2016. Modern techniques and applications for real-time non-rigid registration. Proc. SIGGRAPH Asia (Technical Courses).Google ScholarGoogle Scholar
  35. Tagliasacchi, A., Schroeder, M., Tkach, A., Bouaziz, S., Botsch, M., and Pauly, M. 2015. Robust articulated-icp for real-time hand tracking. Computer Graphics Forum (Proc. Symposium on Geometry Processing, SGP).Google ScholarGoogle Scholar
  36. Tagliasacchi, A., Delame, T., Spagnuolo, M., Amenta, N., and Telea, A. 2016. 3d skeletons: A state-of-the-art report. Computer Graphics Forum (Proc. of EuroGraphics).Google ScholarGoogle Scholar
  37. Tan, D. J., Cashman, T., Taylor, J., Fitzgibbon, A., Tarlow, D., Khamis, S., Izadi, S., and Shotton, J. 2016. Fits like a glove: Rapid and reliable hand shape personalization. In Proc. of Comp. Vision and Pattern Recog. (CVPR).Google ScholarGoogle Scholar
  38. Tang, D., Yu, T.-H., and Kim, T.-K. 2013. Real-time articulated hand pose estimation using semi-supervised transductive regression forests. In Proc. of the Intern. Conf. on Computer Vision (ICCV). Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Taylor, J., Stebbing, R., Ramakrishna, V., Keskin, C., Shotton, J., Izadi, S., Hertzmann, A., and Fitzgibbon, A. 2014. User-specific hand modeling from monocular depth sequences. In Proc. of Comp. Vision and Pattern Recog. (CVPR). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Taylor, J., Bordeaux, L., Cashman, T., Corish, B., Keskin, C., Soto, E., Sweeney, D., Valentin, J., Luff, B., Topalian, A., Wood, E., Khamis, S., Kohli, P., Sharp, T., Izadi, S., Banks, R., Fitzgibbon, A., and Shotton, J. 2016. Efficient and precise interactive hand tracking through joint, continuous optimization of pose and correspondences. ACM Transactions on Graphics (Proc. of SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Tejani, A., Tang, D., Kouskouridas, R., and Kim, T.-K. 2014. Latent-class hough forests for 3d object detection and pose estimation. In Proc. of the European Conf. on Computer Vision (ECCV).Google ScholarGoogle Scholar
  42. Thiery, J.-M., Guy, E., and Boubekeur, T. 2013. Spheremeshes: Shape approximation using spherical quadric error metrics. ACM Transactions on Graphics (Proc. of SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Thiery, J.-M., Guy, E., Boubekeur, T., and Eisemann, E. 2016. Animated mesh approximation with sphere-meshes. ACM Transactions on Graphics (TOG). Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Tompson, J., Stein, M., Lecun, Y., and Perlin, K. 2014. Real-time continuous pose recovery of human hands using convolutional networks. ACM Transactions on Graphics (TOG). Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Vaillant, R., Barthe, L., Guennebaud, G., Cani, M.-P., Rohmer, D., Wyvill, B., Gourmel, O., and Paulin, M. 2013. Implicit skinning: Real-time skin deformation with contact modeling. ACM Transactions on Graphics (Proc. of SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Vaillant, R., Guennebaud, G., Barthe, L., Wyvill, B., and Cani, M.-P. 2014. Robust iso-surface tracking for interactive character skinning. ACM Transactions on Graphics (TOG). Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Wang, R. Y., and Popovic, J. 2009. Real time hand tracking with a colored glove. ACM Transactions on Graphics (Proc. of SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Welch, G., and Foxlin, E. 2002. Motion tracking: No silver bullet, but a respectable arsenal. IEEE Comput. Graph. Appl.. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Sphere-meshes for real-time hand modeling and tracking

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 35, Issue 6
            November 2016
            1045 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2980179
            Issue’s Table of Contents

            Copyright © 2016 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 5 December 2016
            Published in tog Volume 35, Issue 6

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader