skip to main content
research-article

Towards foveated rendering for gaze-tracked virtual reality

Published:05 December 2016Publication History
Skip Abstract Section

Abstract

Foveated rendering synthesizes images with progressively less detail outside the eye fixation region, potentially unlocking significant speedups for wide field-of-view displays, such as head mounted displays, where target framerate and resolution is increasing faster than the performance of traditional real-time renderers.

To study and improve potential gains, we designed a foveated rendering user study to evaluate the perceptual abilities of human peripheral vision when viewing today's displays. We determined that filtering peripheral regions reduces contrast, inducing a sense of tunnel vision. When applying a postprocess contrast enhancement, subjects tolerated up to 2× larger blur radius before detecting differences from a non-foveated ground truth. After verifying these insights on both desktop and head mounted displays augmented with high-speed gaze-tracking, we designed a perceptual target image to strive for when engineering a production foveated renderer.

Given our perceptual target, we designed a practical foveated rendering system that reduces number of shades by up to 70% and allows coarsened shading up to 30° closer to the fovea than Guenter et al. [2012] without introducing perceivable aliasing or blur. We filter both pre- and post-shading to address aliasing from undersampling in the periphery, introduce a novel multiresolution- and saccade-aware temporal antialising algorithm, and use contrast enhancement to help recover peripheral details that are resolvable by our eye but degraded by filtering.

We validate our system by performing another user study. Frequency analysis shows our system closely matches our perceptual target. Measurements of temporal stability show we obtain quality similar to temporally filtered non-foveated renderings.

Skip Supplemental Material Section

Supplemental Material

References

  1. Baker, D., 2016. Object space lighting - following film rendering 2 decades later in real time, 03. Game Developers Conference Talk.Google ScholarGoogle Scholar
  2. Banks, M. S., Sekuler, A. B., and Anderson, S. J. 1991. Peripheral spatial vision: limits imposed by optics, photoreceptors, and receptor pooling. Journal of the Optical Society of America A 8, 11, 1775--1787.Google ScholarGoogle ScholarCross RefCross Ref
  3. Banks, M. S., Gepshtein, S., and Landy, M. S. 2004. Why is spatial stereoresolution so low? The Journal of Neuroscience 24, 9, 2077--2089.Google ScholarGoogle ScholarCross RefCross Ref
  4. Clarberg, P., Toth, R., Hasselgren, J., Nilsson, J., and Akenine-Möller, T. 2014. Amfs: adaptive multi-frequency shading for future graphics processors. ACM Transactions on Graphics 33, 4, 141:1--141:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cowey, A., and Rolls, E. T. 1974. Human cortical magnification factor and its relation to visual acuity. Experimental Brain Research 21, 5, 447--454.Google ScholarGoogle ScholarCross RefCross Ref
  6. Curcio, C. A., and Allen, K. A. 1990. Topography of ganglion cells in human retina. Journal of Comparative Neurology 300, 1, 5--25.Google ScholarGoogle ScholarCross RefCross Ref
  7. Curcio, C. A., Sloan, K. R., Kalina, R. E., and Hendrickson, A. E. 1990. Human photoreceptor topography. Journal of Comparative Neurology 292, 4, 497--523.Google ScholarGoogle ScholarCross RefCross Ref
  8. Ferree, C. E., Rand, G. G., and Hardy, C. C. 1931. Refraction for the peripheral field of vision. Archives of Ophthalmology 5, 5, 717--731.Google ScholarGoogle ScholarCross RefCross Ref
  9. Green, C. 2007. Improved alpha-tested magnification for vector textures and special effects. In ACM SIGGRAPH Courses, SIGGRAPH, 9--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Grundland, M., Vohra, R., Williams, G. P., and Dodgson, N. A. 2006. Cross Dissolve Without Cross Fade: Preserving Contrast, Color and Salience in Image Compositing. Computer Graphics Forum 25, 3, 577--586.Google ScholarGoogle ScholarCross RefCross Ref
  11. Guenter, B., Finch, M., Drucker, S., Tan, D., and Snyder, J. 2012. Foveated 3D graphics. ACM Transactions on Graphics 31, 6, 164:1--164:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hansen, T., Pracejus, L., and Gegenfurtner, K. R. 2009. Color perception in the intermediate periphery of the visual field. Journal of Vision 9, 4, 26:1--26:12.Google ScholarGoogle ScholarCross RefCross Ref
  13. He, Y., Gu, Y., and Fatahalian, K. 2014. Extending the graphics pipeline with adaptive, multi-rate shading. ACM Transactions on Graphics 33, 4, 142:1--142:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hill, S., McAuley, S., Burley, B., Chan, D., Fascione, L., Iwanicki, M., Hoffman, N., Jakob, W., Neubelt, D., Pesce, A., and Pettineo, M. 2015. Physically based shading in theory and practice. In ACM SIGGRAPH Courses, SIGGRAPH, 22:1--22:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hillesland, K. E., and Yang, J. C. 2016. Texel Shading. In EG 2016 - Short Papers, The Eurographics Association, T. Bashford-Rogers and L. P. Santos, Eds.Google ScholarGoogle Scholar
  16. Jimenez, J., Echevarria, J. I., Sousa, T., and Gutierrez, D. 2012. SMAA: Enhanced morphological antialiasing. Computer Graphics Forum (Proc. EUROGRAPHICS 2012) 31, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kaplanyan, A., Hill, S., Patney, A., and Lefohn, A. 2016. Filtering distributions of normals for shading antialiasing. In Proceedings of the Symposium on High-Performance Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Karis, B. 2014. High-quality temporal supersampling. In Advances in Real-Time Rendering in Games, SIGGRAPH Courses.Google ScholarGoogle Scholar
  19. Kelly, D. H., and Savoie, R. E. 1973. A study of sine-wave contrast sensitivity by two psychophysical methods. Perception & Psychophysics 14, 2, 313--318.Google ScholarGoogle ScholarCross RefCross Ref
  20. Kelly, D. H. 1984. Retinal inhomogeneity. i. spatiotemporal contrast sensitivity. Journal of the Optical Society of America A 1, 1, 107--113.Google ScholarGoogle ScholarCross RefCross Ref
  21. Kim, M. H., Ritschel, T., and Kautz, J. 2011. Edge-aware color appearance. ACM Transactions on Graphics 30, 2, 13:1--13:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Koenderink, J. J., Bouman, M. A., Bueno de Mesquita, A. E., and Slappendel, S. 1978. Perimetry of contrast detection thresholds of moving spatial sine patterns. II. The far peripheral visual field (eccentricity 0 degrees-50 degrees). Journal of the Optical Society of America A 68, 6, 850--854.Google ScholarGoogle ScholarCross RefCross Ref
  23. Koenderink, J. J., Bouman, M. A., Bueno de Mesquita, A. E., and Slappendel, S. 1978. Perimetry of contrast detection thresholds of moving spatial sine wave patterns. I. The near peripheral visual field (eccentricity 0 degrees-8 degrees). Journal of the Optical Society of America A 68, 6, 845--849.Google ScholarGoogle ScholarCross RefCross Ref
  24. Koenderink, J. J., Bouman, M. A., Bueno de Mesquita, A. E., and Slappendel, S. 1978. Perimetry of contrast detection thresholds of moving spatial sine wave patterns. III. The target extent as a sensitivity controlling parameter. Journal of the Optical Society of America A 68, 6, 854--860.Google ScholarGoogle ScholarCross RefCross Ref
  25. Lauritzen, A., Salvi, M., and Lefohn, A. 2011. Sample distribution shadow maps. In Symposium on Interactive 3D Graphics and Games, 97--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Levi, D. M., Klein, S. A., and Aitsebaomo, P. 1985. Vernier acuity, crowding and cortical magnification. Vision Research 25, 7, 963--977.Google ScholarGoogle ScholarCross RefCross Ref
  27. Levitt, H. 1971. Transformed up-down methods in psychoacoustics. The Journal of the Acoustical society of America 49, 2B, 467--477.Google ScholarGoogle ScholarCross RefCross Ref
  28. McKee, S. P., and Nakayama, K. 1984. The detection of motion in the peripheral visual field. Vision Research 24, 1, 25--32.Google ScholarGoogle ScholarCross RefCross Ref
  29. Mäkelä, P., Näsänen, R., Rovamo, J., and Melmoth, D. 2001. Identification of facial images in peripheral vision. Vision Research 41, 5, 599--610.Google ScholarGoogle ScholarCross RefCross Ref
  30. Navarro, R., Artal, P., and Williams, D. R. 1993. Modulation transfer of the human eye as a function of retinal eccentricity. Journal of the Optical Society of America A 10, 2, 201--212.Google ScholarGoogle ScholarCross RefCross Ref
  31. Noorlander, C., Koenderink, J. J., Olden, R. J. D., and Edens, B. W. 1983. Sensitivity to spatiotemporal colour contrast in the peripheral visual field. Vision Research 23, 1, 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  32. Olano, M., and Baker, D. 2010. Lean mapping. In Symposium on Interactive 3D Graphics and Games, 181--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Öztireli, A. C., and Gross, M. 2015. Perceptually based downscaling of images. ACM Transactions on Graphics 34, 4, 77:1--77:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Patney, A., Kim, J., Salvi, M., Kaplanyan, A., Wyman, C., Benty, N., Lefohn, A., and Luebke, D. 2016. Perceptually-based foveated virtual reality. In ACM SIGGRAPH 2016 Emerging Technologies, ACM, New York, NY, USA, SIGGRAPH '16, 17:1--17:2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Pharr, M., and Humphreys, G. 2010. Physically Based Rendering, Second Edition: From Theory to Implementation, 2nd ed. Morgan Kaufmann Publishers, Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Rosén, R. 2013. Peripheral Vision: Adaptive Optics and Psychophysics. PhD thesis, Royal Institute of Technology, Stockholm, Sweden.Google ScholarGoogle Scholar
  37. Rovamo, J., and Virsu, V. 1979. An estimation and application of the human cortical magnification factor. Experimental Brain Research 37, 3, 495--510.Google ScholarGoogle ScholarCross RefCross Ref
  38. Rovamo, J., Virsu, V., Laurinen, P., and Hyvärinen, L. 1982. Resolution of gratings oriented along and across meridians in peripheral vision. Investigative Ophthalmology & Visual Science 23, 5, 666--670.Google ScholarGoogle Scholar
  39. Salvi, M., and Vaidyanathan, K. 2014. Multi-layer alpha blending. In Proceedings of the 18th meeting of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 151--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Schütt, H. H., Harmeling, S., Macke, J. H., and Wichmann, F. A. 2016. Painfree and accurate bayesian estimation of psychometric functions for (potentially) overdispersed data. Vision Research 122, 105 -- 123.Google ScholarGoogle ScholarCross RefCross Ref
  41. Solomon, S. G., Lee, B. B., White, A. J., Ruttiger, L., and Martin, P. R. 2005. Chromatic organization of ganglion cell receptive fields in the peripheral retina. Journal of Neuroscience 25, 18, 4527--4539.Google ScholarGoogle ScholarCross RefCross Ref
  42. Strasburger, H., Rentschler, I., and Harvey, L. O. 1994. Cortical magnification theory fails to predict visual recognition. European Journal of Neuroscience 6, 10, 1583--1588.Google ScholarGoogle ScholarCross RefCross Ref
  43. Strasburger, H., Rentschler, I., and Jüttner, M. 2011. Peripheral vision and pattern recognition: A review. Journal of Vision 11, 5, 13:1--13:82.Google ScholarGoogle ScholarCross RefCross Ref
  44. Swafford, N. T., Iglesias-Guitian, J. A., Koniaris, C., Moon, B., Cosker, D., and Mitchell, K. 2016. User, metric, and computational evaluation of foveated rendering methods. In Proceedings of the ACM Symposium on Applied Perception, ACM, New York, NY, USA, SAP '16, 7--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Thibos, L. N., Cheney, F. E., and Walsh, D. J. 1987. Retinal limits to the detection and resolution of gratings. Journal of the Optical Society of America A 4, 8, 1524--1529.Google ScholarGoogle ScholarCross RefCross Ref
  46. Thibos, L., Walsh, D., and Cheney, F. 1987. Vision beyond the resolution limit: Aliasing in the periphery. Vision Research 27, 12, 2193--2197.Google ScholarGoogle ScholarCross RefCross Ref
  47. Thibos, L. N., Still, D. L., and Bradley, A. 1996. Characterization of spatial aliasing and contrast sensitivity in peripheral vision. Vision Research 36, 2, 249--258.Google ScholarGoogle ScholarCross RefCross Ref
  48. Thibos, L. N. 1987. Calculation of the influence of lateral chromatic aberration on image quality across the visual field. Journal of the Optical Society of America A 4, 8, 1673--1680.Google ScholarGoogle ScholarCross RefCross Ref
  49. Toth, R., Nilsson, J., and Akenine-Moller, T. 2016. Comparison of projection methods for rendering virtual reality. In Proceedings of the Symposium on High-Performance Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Vaidyanathan, K., Salvi, M., Toth, R., Foley, T., Akenine-Moller, T., Nilsson, J., Munkberg, J., Hasselgren, J., Sugihara, M., Clarberg, P., Janczak, T., and Lefohn, A. 2014. Coarse pixel shading. In Proceedings of the Symposium on High-Performance Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Wandell, B. A. 1995. Foundations of Vision. Sinauer Associates, Inc.Google ScholarGoogle Scholar
  52. Wang, Y.-Z., Thibos, L. N., and Bradley, A. 1996. Undersampling produces non-veridical motion perception, but not necessarily motion reversal, in peripheral vision. Vision Research 36, 12, 1737--1744.Google ScholarGoogle ScholarCross RefCross Ref
  53. Wang, Y.-Z., Bradley, A., and Thibos, L. N. 1997. Aliased frequencies enable the discrimination of compound gratings in peripheral vision. Vision Research 37, 3, 283--290.Google ScholarGoogle ScholarCross RefCross Ref
  54. Wichmann, F. A., and Hill, N. J. 2001. The psychometric function: I. fitting, sampling, and goodness of fit. Perception & Psychophysics 63, 8, 1293--1313.Google ScholarGoogle ScholarCross RefCross Ref
  55. Wichmann, F. A., and Hill, N. J. 2001. The psychometric function: Ii. bootstrap-based confidence intervals and sampling. Perception & Psychophysics 63, 8, 1314--1329.Google ScholarGoogle ScholarCross RefCross Ref
  56. Williams, D. R., Artal, P., Navarro, R., McMahon, M. J., and Brainard, D. H. 1996. Off-axis optical quality and retinal sampling in the human eye. Vision Research 36, 8, 1103--1114.Google ScholarGoogle ScholarCross RefCross Ref
  57. Williams, L. 1983. Pyramidal parametrics. SIGGRAPH Comput. Graph. 17, 3, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Yang, L., Nehab, D., Sander, P. V., Sitthi-amorn, P., Lawrence, J., and Hoppe, H. 2009. Amortized supersampling. In ACM SIGGRAPH Asia 2009 Papers, ACM, New York, NY, USA, SIGGRAPH Asia '09, 135:1--135:12. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Towards foveated rendering for gaze-tracked virtual reality

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 35, Issue 6
        November 2016
        1045 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2980179
        Issue’s Table of Contents

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 5 December 2016
        Published in tog Volume 35, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader