skip to main content
research-article

The Internet of Things: Opportunities and Challenges for Distributed Data Analysis

Authors Info & Claims
Published:01 August 2016Publication History
Skip Abstract Section

Abstract

Nowadays, data is created by humans as well as automatically collected by physical things, which embed electronics, software, sensors and network connectivity. Together, these entities constitute the Internet of Things (IoT). The automated analysis of its data can provide insights into previously unknown relationships between things, their environment and their users, facilitating an optimization of their behavior. Especially the real-time analysis of data, embedded into physical systems, can enable new forms of autonomous control. These in turn may lead to more sustainable applications, reducing waste and saving resources

IoT's distributed and dynamic nature, resource constraints of sensors and embedded devices as well as the amounts of generated data are challenging even the most advanced automated data analysis methods known today. In particular, the IoT requires a new generation of distributed analysis methods.

Many existing surveys have strongly focused on the centralization of data in the cloud and big data analysis, which follows the paradigm of parallel high-performance computing. However, bandwidth and energy can be too limited for the transmission of raw data, or it is prohibited due to privacy constraints. Such communication-constrained scenarios require decentralized analysis algorithms which at least partly work directly on the generating devices.

After listing data-driven IoT applications, in contrast to existing surveys, we highlight the differences between cloudbased and decentralized analysis from an algorithmic perspective. We present the opportunities and challenges of research on communication-efficient decentralized analysis algorithms. Here, the focus is on the difficult scenario of vertically partitioned data, which covers common IoT use cases. The comprehensive bibliography aims at providing readers with a good starting point for their own work

References

  1. C. Aggarwal, N. Ashish, and A. Sheth. The Internet of Things: A Survey From The Data-Centric Perspective. In C. C. Aggarwal, editor, Managing and Mining Sensor Data. Springer, Berlin, Heidelberg, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  2. Argonne National Laboratory. The Message Passing Interface (MPI) standard. http://www.mcs.anl.gov/research/projects/mpi/, 2015. {Online; accessed 2015-12-15}.Google ScholarGoogle Scholar
  3. L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A survey. Comput. Netw., 54(15):2787--2805, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M.-F. Balcan, A. Blum, S. Fine, and Y. Mansour. Distributed Learning, Communication Complexity and Privacy. In JMLR: Workshop and Conference Proceedings, 25th Annual Conference on Learning Theory, 2012.Google ScholarGoogle Scholar
  5. W. Bernhart and M. Winterhoff. Autonomous Driving: Disruptive Innovation that Promises to Change the Automotive Industry as We Know It. In J. Langheim, editor, Energy Consumption and Autonomous Driving: Proc. of the 3rd CESA Automotive Electronics Congress. Springer, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  6. K. Bhaduri and M. Stolpe. Distributed Data Mining in Sensor Networks. In C. Aggarwal, editor, Managing and Mining Sensor Data. Springer, Berlin, Heidelberg, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  7. A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: Massive Online Analysis. J. Mach. Learn. Res., 11:1601--1604, Aug. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Bin, L. Yuan, and W. Xiaoyi. Research on Data Mining Models for the Internet of Things. In Proc. of the Int. Conf. on Image Analysis and Signal Processing (IASP), pages 127--132, 2010.Google ScholarGoogle Scholar
  9. C. Bockermann. Mining Big Data Streams for Multiple Concepts. PhD thesis, TU Dortmund, Dortmund, Germany, 2015.Google ScholarGoogle Scholar
  10. C. Bockermann, M. Apel, and M. Meier. Learning SQL for Database Intrusion Detection Using Context- Sensitive Modelling. In U. Flegel, and D. Bruschi, editors, Proc. of the 6th Int. Conf. on Detection of Intrusions and Malware (DIMVA), pages 196--205. Springer, Berlin, Heidelberg, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. C. Bockermann, K. Brugge, J. Buss, A. Egorov, K. Morik, W. Rhode, and T. Ruhe. Online Analysis of High-Volume Data Streams in Astroparticle Physics. In Proc. of the European Conf. on Machine Learning (ECML), Industrial Track. Springer, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  12. A. Botta, W. de Donato, V. Persico, and A. Pescape. Integration of Cloud computing and Internet of Things: A survey. Future Gener. Comp. Sy., 56:684--700, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trends Mach. Learn., 3(1):1--122, Jan. 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Branch, C. Giannella, B. Szymanski, R. Wolff, and H. Kargupta. In-network outlier detection in wireless sensor networks. Knowl. Inf. Sys., 34(1):23--54, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. L. Breiman. Random forests. Machine Learning, 45:5--32, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Brettel, N. Friederichsen, M. Keller, and M. Rosenberg. How Virtualization, Decentralization and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective. Int. Journ. of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 8(1):37--44, 2014.Google ScholarGoogle Scholar
  17. A. Buczak and E. Guven. A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys & Tutorials, 2015.Google ScholarGoogle Scholar
  18. N. Bui and M. Zorzi. Health Care Applications: A Solution Based on the Internet of Things. In Proc. of the 4th Int. Symp. on Applied Sciences in Biomedical and Communication Technologies, ISABEL '11, pages 131:1--131:5. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. Burrus. The Internet of Things is Far Bigger Than Anyone Realizes. http://www.wired.com/insights/2014/11/the-internet-of-things-bigger/, 2014. {Online; accessed 2016-02-16}.Google ScholarGoogle Scholar
  20. Canalys. Wearable band shipments set to exceed 43.2 million units in 2015. http://www.canalys.com/newsroom/wearable-bandshipments-set-exceed-432-million-units-2015, 2014. {Online; accessed 2016-04-04}.Google ScholarGoogle Scholar
  21. D. Caragea, A. Silvescu, and V. Honavar. Agents that learn from distributed dynamic data sources. In Proc. of the Workshop on Learning Agents, 2000.Google ScholarGoogle Scholar
  22. A. Carroll and G. Heiser. An Analysis of Power Consumption in a Smartphone. In Proc. of the 2010 USENIX Conf. on USENIX Ann. Technical Conf. (USENIXATC), USA, 2010. USENIX Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. F. Chen, P. Deng, J. Wan, D. Zhang, A. Vasilakos, and X. Rong. Data Mining for the Internet of Things: Literature Review and Challenges. Int. J. Distrib. Sen. Netw., 2015:12:12--12:12, Jan. 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Chen, Y. Ma, J. Wang, D. Mau, and E. Song. Enabling Comfortable Sports Therapy for Patient: A Novel Lightweight Durable and Portable ECG Monitoring System. In IEEE 15th Int. Conf. on e-Health Networking, Applications and Services (Healthcom), pages 271--273, 2013.Google ScholarGoogle Scholar
  25. M. Chui, M. Loffler, and R. Roberts. The Internet of Things. http://www.mckinsey.com/insights/high_tech_telecoms_internet/the_internet_of_things, Mar. 2010. {Online; accessed 2016-02-16}.Google ScholarGoogle Scholar
  26. F. Combaneyre. Understanding Data Streams in IoT. http://www.sas.com/en\_us/whitepapers/understanding-data-streams-in-iot-107491.html, 2015. {Online; accessed 2016-02-23}.Google ScholarGoogle Scholar
  27. K. Das, K. Bhaduri, and H. Kargupta. A local asynchronous distributed privacy preserving feature selection algorithm for large peer-to-peer networks. Knowledge and Information Systems, 24(3):341--367, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  28. K. Das, K. Bhaduri, and P. Votava. Distributed Anomaly Detection Using 1-class SVM for Vertically Partitioned Data. Stat. Anal. Data Min., 4(4):393--406, Aug. 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. E. Davies. Computer and Machine Vision: Theory, Algorithms, Practicalities. Academic Pr, Inc., 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. G. De Francisci Morales and A. Bifet. SAMOA: Scalable Advanced Massive Online Analysis. J. Mach. Learn. Res., 16(1):149--153, Jan. 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. Diaz, C. Martin, and B. Rubio. State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud computing. Journal of Network and Computer Applications, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Dixon. Who Will Step Up To Secure The Internet of Things? http://techcrunch.com/2015/10/02/whowill-step-up-to-secure-the-internet-ofthings/, 2015. {Online; accessed 2016-02-16}.Google ScholarGoogle Scholar
  33. P. Engebretson. The Basics of Hacking and Penetration Testing. Elsevier/Syngress, 2nd edition, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. D. Evans. The Internet of Things -- How the Next Evolution of the Internet Is Changing Everything. https://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf, Apr. 2011. {Online; accessed 2015-11-19}.Google ScholarGoogle Scholar
  35. P. Evans and M. Annunziata. Industrial Internet: Pushing the Boundaries of Minds and Machines. http://www.ge.com/docs/chapters/Industrial_ Internet.pdf, 2012. {Online; accessed 2016-04-04}.Google ScholarGoogle Scholar
  36. T. Fawcett. Mining the Quantified Self: Personal Knowledge Discovery as a Challenge for Data Science. Big Data, 3(4):249--266, Jan. 2016.Google ScholarGoogle ScholarCross RefCross Ref
  37. D. Fletcher. Internet of Things. In M. Blowers, editor, Evolution of Cyber Technologies and Operations to 2035, pages 19--32. Springer International Publishing, 2015.Google ScholarGoogle Scholar
  38. J. Gama. Knowledge Discovery from Data Streams. Chapman & Hall/CRC, 1st edition, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems: The Complete Book. Pearson Education Limited, 2nd edition, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. E. Gaura, J. Brusey, M. Allen, R. Wilkins, D. Goldsmith, and R. Rednic. Edge Mining the Internet of Things. IEEE Sensors Journal, 13(10):3816--3825, 2013.Google ScholarGoogle Scholar
  41. F. Gianotti and D. Pedreschi, editors. Mobility, Data Mining and Privacy. Springer, 2007.Google ScholarGoogle Scholar
  42. J. Glaser. How The Internet of Things Will Affect Health Care. http://www.hhnmag.com/articles/3438-how-the-internet-of-things-will-affecthealth-care, Jun. 2015. {Online; accessed 2016-02-23}.Google ScholarGoogle Scholar
  43. J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions. Future Gener. Comput. Syst., 29(7):1645--1660, Sep. 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. J. Han and M. Kamber. Data Mining. Morgan Kaufmann, 2nd edition, 2006.Google ScholarGoogle Scholar
  45. B. Harpham. How the Internet of Things is changing healthcare and transportation. http://www.cio.com/article/2981481/healthcare/how-theinternet- of-things-is-changing-healthcareand- transportation.html, Sep. 2015. {Online; accessed 2016-02-16}.Google ScholarGoogle Scholar
  46. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2nd edition, 2009.Google ScholarGoogle Scholar
  47. A.-C. Hauschild, T. Schneider, J. Pauling, K. Rupp, M. Jang, J. Baumbach, and J. Baumbach. Computational Methods for Metabolomic Data Analysis of Ion Mobility Spectrometry Data - Rviewing the State of the Art. Metabolites, 2(4):733--755, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  48. C. Heinze, B. McWilliams, and N. Meinshausen. DUAL-LOCO: Preserving privacy between features in distributed estimation. In Proc. of the 19th Int. Conf. on Artificial Intelligence and Statistics (AISTATS), JMLR: Workshop and Conference Proceedings, 2016.Google ScholarGoogle Scholar
  49. P. Hintjens. ZeroMQ. O'Reilly, USA, 2013.Google ScholarGoogle Scholar
  50. IBM. IBM Intelligent Water: Water management software with analytics for improved infrastructure and operations. http://www-03.ibm.com/software/products/en/intelligentwater, 2016. {Online; accessed 2016-04-01}.Google ScholarGoogle Scholar
  51. M. Imhoff, R. Fried, U. Gather, and V. Lanius. Dimension Reduction for Physiological Variables Using Graphical Modeling. In AMIA 2003, American Medical Informatics Association Annual Symposium, Washington, DC, USA, November 8-12, 2003, 2003.Google ScholarGoogle Scholar
  52. M. Kamp, M. Boley, D. Keren, A. Schuster, and I. Scharfman. Communication-Efficient Distributed Online Prediction by Decentralized Variance Monitoring. In T. Calders, F. Esposito, E. Hullermeier, and R. Meo, editors, Proc. of the European Conf. on Machine Learning and Principles and Practice of Knowledge Discovery (ECML/PKDD), pages 623--639. Springer, 2014.Google ScholarGoogle Scholar
  53. H. Kargupta, R. Bhargava, K. Liu, M. Powers, P. Blair, S. Bushra, J. Dull, K. Sarkar, M. Klein, M. Vasa, and D. Handy. VEDAS: A Mobile and Distributed Data Stream Mining System for Real-Time Vehicle Monitoring. In Proc. of the SIAM Int. Conf. on Data Mining (SDM), chapter 28, pages 300--311. 2004.Google ScholarGoogle ScholarCross RefCross Ref
  54. H. Kargupta, K. Sarkar, and M. Gilligan. MineFleet: an overview of a widely adopted distributed vehicle performance data mining system. In Proc. of the 16th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 37--46, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. A. Khan, A. Mahmood, A. Safdar, Z. Khan, and N. Khan. Load forecasting, dynamic pricing and DSM in smart grid: A review. Renew. Sust. Energ. Rev., 54:1311--1322, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  56. R. Kohavi and G. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273--324, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. R. Krawiec, J. Nadler, P. Kinchley, E. Tye, and J. Jarboe. No appointment necessary: How the IoT and patient-generated data can unlock health care value. http://dupress.com/articles/internet-ofthings-iot-in-health-care-industry/, Aug. 2015. {Online; accessed 2016-02-16}.Google ScholarGoogle Scholar
  58. J. Kreps. Questioning the Lambda Architecture. http://radar.oreilly.com/2014/07/questioningthe-lambda-architecture.html, 2014. {Online; accessed 2015-12-15}.Google ScholarGoogle Scholar
  59. H.-P. Kriegel, P. Kroger, and A. Zimek. Clustering High-dimensional Data: A Survey on Subspace Clustering, Pattern-based Clustering, and Correlation Clustering. ACM Trans. Knowl. Discov. Data, 3(1):1:1--1:58, Mar. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. V. Lanius and U. Gather. Robust online signal extraction from multivariate time series. Comput. Stat. Data An., 54(4):966--975, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. S. Lee, M. Stolpe, and K. Morik. Separable Approximate Optimization of Support Vector Machines for Distributed Sensing. In P. Flach, T. D. Bie, and N. Cristianini, editors, Machine Learning and Knowledge Discovery in Databases, volume 7524 of LNCS, pages 387--402, Berlin, Heidelberg, 2012. Springer.Google ScholarGoogle Scholar
  62. T. Liebig, N. Piatkowski, C. Bockermann, and K. Morik. Predictive Trip Planning - Smart Routing in Smart Cities. In Proc. of the Workshop on Mining Urban Data at the Int. Conf. on Extending Database Technology, pages 331--338, 2014.Google ScholarGoogle Scholar
  63. J. Long, J. Swidrak, M. Feng, and O. Buyukozturk. Smart Sensors: A Study of Power Consumption and Reliability. In E. Wee Sit, editor, Sensors and Instrumentation, Volume 5: Proc. of the 33rd IMAC, A Conf. and Exposition on Structural Dynamics, pages 53--60. Springer, 2015.Google ScholarGoogle Scholar
  64. J. MacQueen. Some Methods for Classification and Analysis of Multivariate Observations. In Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability, pages 281--297, 1967.Google ScholarGoogle Scholar
  65. R. Mallik and H. Kargupta. A Sustainable Approach for Demand Prediction in Smart Grids using a Distributed Local Asynchronous Algorithm. In Proc. of the Conf. on Data Understanding (CIDU), pages 1--15, 2011.Google ScholarGoogle Scholar
  66. O. Mangasarian, E. Wild, and G. Fung. Privacypreserving Classification of Vertically Partitioned Data via Random Kernels. ACM Trans. Knowl. Discov. Data, 2(3):12:1--12:16, Oct. 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. N. Marz and J. Warren. Big Data - Principles and best practices of scalable realtime data systems. Manning, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. F. Mattern and C. Floerkemeier. From the Internet of Computers to the Internet of Things. In K. Sachs, I. Petrov, and P. Guerrero, editors, From Active Data Management to Event-based Systems and More, pages 242--259. Springer-Verlag, Berlin, Heidelberg, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. M. May, B. Berendt, A. Cornuejols, J. Gama, F. Giannotti, A. Hotho, D. Malerba, E. Menesalvas, K. Morik, R. Pedersen, L. Saitta, Y. Saygin, A. Schuster, and K. Vanhoof. Research Challenges in Ubiquitous Knowledge Discovery. In Kargupta, Han, Yu, Motwani, and Kumar, editors, Next Generation of Data Mining (NGDM), pages 131--151. CRC Press, 2009.Google ScholarGoogle Scholar
  70. D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac. Internet of things: Vision, applications and research challenges. Ad Hoc Networks, 10(7):1497--1516, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. T. Mitchell. Machine Learning. Mcgraw-Hill Education Ltd, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. K. Morik, K. Bhaduri, and H. Kargupta. Introduction to data mining for sustainability. Data Min. Knowl. Disc., 24(2):311--324, Mar. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. R. Moss, A. Zarebski, P. Dawson, and J. McCaw. Forecasting influenza outbreak dynamics in melbourne from internet search query surveillance data. Influenza and Other Respiratory Viruses, page n/a, Feb. 2016.Google ScholarGoogle Scholar
  74. Navigant Research. Shipments of Smart Thermostats Are Expected to Reach Nearly 20 Million by 2023. https://www.navigantresearch.com/newsroom/shipments-of-smart-thermostats-are-expectedto-reach-nearly-20-million-by-2023, 2014. {Online; accessed 2016-04-04}.Google ScholarGoogle Scholar
  75. Oracle Corporation. Energize Your Business with IoTEnabled Applications. http://www.oracle.com/us/dm/oracle-iot-cloud-service-2625351.pdf, 2015. {Online; accessed 2016-02-16}.Google ScholarGoogle Scholar
  76. Oracle Corporation. Unlocking the Promise of a Connected World: Using the Cloud to Enable the Internet of Things. http://www.oracle.com/us/solutions/internetofthings/iot-and-cloud-wp-2686546.pdf, 2015. {Online; accessed 2015-12-15}.Google ScholarGoogle Scholar
  77. Oxford Economics. Manufacturing Transformation: Achieving competetive advantage in changing global marketplace. http://www.oxfordeconomics.com/Media/Default/Thought%20Leadership/executive-interviews-and-case-studies/PTC/Manufacturing%20Transformation%20130607.pdf, 2013. {Online; accessed 2016-04-04}.Google ScholarGoogle Scholar
  78. D. Partynski and S. Koo. Integration of Smart Sensor Networks into Internet of Things: Challenges and Applications. In Proc. of the IEEE Int. Conf. on Green Computing and Communications (GreenCom) and IEEE Internet of Things (iThings) and IEEE Cyber, Physical and Social Computing (CPSCom), pages 1162--1167, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. G. Patrini, R. Nock, T. Caetano, and P. Rivera. (Almost) No Label No Cry. In Advances in Neural Information Processing Systems (NIPS), number 27, pages 190--198. Curran Associates, Inc., 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Y. Qin, Q. Sheng, N. Falkner, S. Dustdar, H. Wang, and A. Vasilakos. When things matter: A survey on data-centric internet of things. J. Netw. Comput. Appl., 64:137--153, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. R. Roman, J. Zhou, and J. Lopez. On the features and challenges of security and privacy in distributed internet of things. Computer Networks, 57(10):2266--2279, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. SCATS. Sydney Coordinated Adaptive Traffic System. http://www.scats.com.au/, 2013. {Online; accessed 2015-08-19}.Google ScholarGoogle Scholar
  84. D. Shoup. Free Parking or Free Markets. Cato Unbound - A Journal of Debate, 2011. {Online; accessed 2016-04-04}.Google ScholarGoogle Scholar
  85. K. Shvachko, H. K., S. Radia, and R. Chansler. The Hadoop Distributed File System. In IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pages 1--10, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. SmartSantanderSantander. Future Internet Research & Experimentation. http://www.smartsantander.eu, 2016. {Online; accessed 2016-04-01}.Google ScholarGoogle Scholar
  87. U. Stanczyk and L. Jain, editors. Feature Selection for Data and Pattern Recognition. Studies in Computational Intelligence. Springer, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. W. Stephenson. IntelliStreets: Digital Scaffolding for 'Smart' Cities. http://www.huffingtonpost.com/wdavid-stephenson/intellistreets_b_1242972. html, 2012. {Online; accessed 2016-04-04}.Google ScholarGoogle Scholar
  89. J. Stierwalt. Formula 1 and HANA: How F1 Racing is Pioneering Big Data Analytics. http://jeremystierwalt.com/2014/01/29/formula-1-and-hana-how-f1-racing-is-pioneering-bigdata-analytics/, 2014. {Online; accessed 2016-02-16}.Google ScholarGoogle Scholar
  90. M. Stolpe, K. Bhaduri, and K. Das. Distributed Support Vector Machines: An Overview. In Solving Large Scale Learning Tasks: Challenges and Algorithms, volume 9580 of LNCS. 2016. {to appear}.Google ScholarGoogle Scholar
  91. M. Stolpe, H. Blom, and K. Morik. Sustainable Industrial Processes by Embedded Real-Time Quality Prediction. In J. Lassig, K. Kerstin, and K. Morik, editors, Computational Sustainability, volume 9570 of LNCS, pages 207--251. Springer, Berlin, Heidelberg, 2016.Google ScholarGoogle Scholar
  92. M. Stolpe, T. Liebig, and K. Morik. Communicationefficient learning of traffic flow in a network of wireless presence sensors. In Proc. of the Workshop on Parallel and Distributed Computing for Knowledge Discovery in Data Bases (PDCKDD), CEUR Workshop Proceedings, page (to appear). CEUR-WS, 2015.Google ScholarGoogle Scholar
  93. M. Stolpe and K. Morik. Learning from Label Proportions by Optimizing Cluster Model Selection. In Proc. of the 2011 European Conference on Machine Learning and Knowledge Discovery in Databases, volume 3, pages 349--364, Berlin, Heidelberg, 2011. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. M. Stolpe, K. Morik, B. Konrad, D. Lieber, and J. Deuse. Challenges for Data Mining on Sensor Data of Interlinked Processes. In Proceedings of the Next Generation Data Mining Summit (NGDM) 2011, 2011.Google ScholarGoogle Scholar
  95. L. Sweeney. K-anonymity: A Model for Protecting Privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 10(5):557--570, Oct. 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. J. Tapper. Obama administration spied on German media as well as its government. 2015. {Online; accessed: 2016-03-30}.Google ScholarGoogle Scholar
  97. The Apache Software Foundation. Apache Flink: Scalable Batch and Stream Data Processing. http://flink.apache.org/, 2015. {Online; accessed 2015-12-15}.Google ScholarGoogle Scholar
  98. The Apache Software Foundation. mahout. http://mahout.apache.org/, 2015. {Online; accessed 2016-03-30}.Google ScholarGoogle Scholar
  99. N. Treiber, J. Heinermann, and O. Kramer. Wind Power Prediction with Machine Learning. In J. Lassig, K. Kersting, and K. Morik, editors, Computational Sustainability, volume 9570 of LNCS. Springer, 2016.Google ScholarGoogle Scholar
  100. C.-W. Tsai, C. Lai, M. Chiang, and L. Yang. Data Mining for Internet of Things: A Survey. IEEE Communications Surveys & Tutorials, 16(1):77--97, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  101. C.-W. Tsai, C.-F. Lai, and A. Vasilakos. Future Internet of Things: open issues and challenges. Wirel. Netw., 20(8):2201--2217, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. United Nations. World Urbanization Prospects. http://esa.un.org/unpd/wup/Publications/Files/WUP2014-Report.pdf, 2014. {Online; accessed 2016-04-04}.Google ScholarGoogle Scholar
  103. A. K. R. Venkatapathy, A. Riesner, M. Roidl, J. Emmerich, and M. ten Hompel. PhyNode: An intelligent, cyber-physical system with energy neutral operation for PhyNetLab. In Proc. of the Europ. Conf. on Smart Objects, Systems and Technologies, Smart SysTech, 2015.Google ScholarGoogle Scholar
  104. Verizon. State of the Market: The Internet of Things 2015. http://www.verizonenterprise.com/state-of-the-market-internet-of-things/, 2015. {Online; accessed 2015-10-22}.Google ScholarGoogle Scholar
  105. C. Wang, Z. Bi, and L. D. Xu. IoT and Cloud Computing in Automation of Assembly Modeling Systems. IEEE T. Ind. Inform., 10(2):1426--1434, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  106. M. Weiser. The Computer for the 21st Century. Sci. Am., 265(9), 1991.Google ScholarGoogle Scholar
  107. T. White. Hadoop: The Definitive Guide. O'Reilly, USA, 2nd edition, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. B. Wolff, E. Lorenz, and O. Kramer. Statistical Learning for Short-Term Photovoltaic Power Predictions. In J. Lassig, K. Kersting, and K. Morik, editors, Computational Sustainability, volume 9570 of LNCS. Springer, Berlin, Heidelberg, 2016.Google ScholarGoogle Scholar
  109. E. Woods. Smart Street Lights Face Financial Hurdles. https://www.navigantresearch.com/blog/smart-street-lights-face-financial-hurdles, 2012. {Online; accessed 2016-04-04}.Google ScholarGoogle Scholar
  110. L. Xu, W. He, and S. Li. Internet of Things in Industries: A survey. IEEE Transactions on Industrial Informatics, 10(4):2233--2243, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  111. H. Yunhong, F. Liang, and H. Guoping. Privacy-Preserving SVM Classification on Vertically Partitioned Data without Secure Multi-party Computation. In 5th Int. Conf. on Natural Computation (ICNC), volume 1, pages 543--546, Aug. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. J. Zhang, D. Roy, S. Devadiga, and M. Zheng. Anomaly detection in MODIS land products via time series analysis. Geo-spatial Information Science, 10(1):44--50, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  113. Y. Zhang, J. Duchi, M. Jordan, and M. Wainwright. Information-theoretic lower bounds for distributed statistical estimation with communication constraints. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems (NIPS) 26, pages 2328--2336. Curran Associates, Inc., 2013.Google ScholarGoogle Scholar
  114. Y. Zhao, R. Schwartz, E. Salomons, A. Ostfeld, and H. Poor. New formulation and optimization methods for water sensor placement. Environmental Modelling & Software, 76:128--136, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Y. Zheng, S. Rajasegarar, C. Leckie, and M. Palaniswami. Smart car parking: Temporal clustering and anomaly detection in urban car parking. In IEEE 9th Int. Conf. on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pages 1--6, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  116. K. Zhou and S. Yang. Understanding household energy consumption behavior: The contribution of energy big data analytics. Renew. Sust. Energ. Rev., 56:810--819, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  117. I. Žliobait?e, M. Pechenizkiy, and J. Gama. An Overview of Concept Drift Applications. In N. Japkowicz and J. Stefanowski, editors, Big Data Analysis: New Algorithms for a New Society, pages 91--114. Springer International Publishing, 2016.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM SIGKDD Explorations Newsletter
    ACM SIGKDD Explorations Newsletter  Volume 18, Issue 1
    June 2016
    45 pages
    ISSN:1931-0145
    EISSN:1931-0153
    DOI:10.1145/2980765
    Issue’s Table of Contents

    Copyright © 2016 Author

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 1 August 2016

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader