skip to main content
10.1145/2988458.2988473acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
course

Data-driven shape analysis and processing

Published: 28 November 2016 Publication History

Abstract

Data-driven methods serve an increasingly important role in discovering geometric, structural, and semantic relationships between shapes. In contrast to traditional approaches that process shapes in isolation of each other, data-driven methods aggregate information from 3D model collections to improve the analysis, modeling and editing of shapes. Through reviewing the literature, we provide an overview of the main concepts and components of these methods, as well as discuss their application to classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.

References

[1]
Aiger, D., Mitra, N. J., and Cohen-Or, D. 2008. 4-points congruent sets for robust pairwise surface registration. In ACM SIGGRAPH 2008 papers, ACM, SIGGRAPH '08, 85:1--85:10.
[2]
Alexa, M., Cohen-Or, D., and Levin, D. 2000. As-rigid-as-possible shape interpolation. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH '00, 157--164.
[3]
Allen, B., Curless, B., and Popović, Z. 2003. The space of human body shapes: Reconstruction and parameterization from range scans. ACM Trans. Graph. 22, 3.
[4]
Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. In ACM SIGGRAPH 2003 Papers, SIGGRAPH '03, 485--493.
[5]
Alon, N., Moshkovitz, D., and Safra, S. 2006. Algorithmic construction of sets for k-restrictions. ACM Trans. Algorithms 2, 153--177.
[6]
Amazon, 2009. Mechanical Turk. http://www.mturk.com.
[7]
Amenta, N., Bern, M., and Kamvysselis, M. 1998. A new voronoi-based surface reconstruction algorithm. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, ACM, SIGGRAPH '98, 415--421.
[8]
Amit, Y., Fink, M., Srebro, N., and Ullman, S. 2007. Uncovering shared structures in multiclass classification. 17--24.
[9]
Anguelov, D., Srinivasan, P., Pang, H.-C., Koller, D., Thrun, S., and Davis, J. 2004. The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. NIPS 17, 33--40.
[10]
Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. Scape: shape completion and animation of people. In Proc. of SIGGRAPH, 408--416.
[11]
Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. Scape: shape completion and animation of people. In ACM SIGGRAPH 2005 Papers, SIGGRAPH '05, 408--416.
[12]
Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., and Ng, A. 2005. Discriminative learning of markov random fields for segmentation of 3D scan data. In Proc. CVPR.
[13]
Ankerst, M., Kastenmüller, G., Kriegel, H.-P., and Seidl, T. 1999. 3D shape histograms for similarity search and classification in spatial databases. In SSD'99, Springer, 207--226.
[14]
Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., and Tal, A. 2006. Mesh segmentation - a comparative study. In Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006, IEEE Computer Society, Washington, DC, USA, 7--.
[15]
Attene, M., Falcidieno, B., and Spagnuolo, M. 2006. Hierarchical mesh segmentation based on fitting primitives. The Visual Computer 22, 3, 181--193.
[16]
Aubry, M., Maturana, D., Efros, A. A., Russell, B. C., and Sivic, J. 2014. Seeing 3d chairs: Exemplar part-based 2d-3d alignment using a large dataset of cad models. In Proc. CVPR.
[17]
Averkiou, M., Kim, V. G., Zheng, Y., and Mitra, N. J. 2014. ShapeSynth: Parameterizing Model Collections for Coupled Shape Exploration and Synthesis. Computer Graphics Forum 33, 2.
[18]
Averkiou, M., Kim, V. G., and Mitra, N. J. 2015. Autocorrelation descriptor for efficient co-alignment of 3d shape collections. Computer Graphics Forum.
[19]
Baak, A., Müller, M., Bharaj, G., Seidel, H.-P., and Theobalt, C. 2011. A data-driven approach for real-time full body pose reconstruction from a depth camera. In Proc. ICCV, 1092--1099.
[20]
Baghshah, M. S., and Shouraki, S. B. 2009. Semi-supervised metric learning using pairwise constraints. IJCAI'09, 1217--1222.
[21]
Banko, M., and Brill, E. 2001. Mitigating the paucity-of-data problem: exploring the effect of training corpus size on classifier performance for natural language processing. In Proc. Int. Conf. on Human Lang. Tech. Research, 1--5.
[22]
Barrett, W. W., Johnson, C. R., and Loewy, R. 1996. The Real Positive Definite Completion Problem: Cycle Completability. Amer Mathematical Society.
[23]
Barutcuoglu, Z., and DeCoro, C. 2006. Hierarchical shape classification using bayesian aggregation. Shape Modeling International.
[24]
Belongie, S., Malik, J., and Puzicha, J. 2002. Shape Matching and Object Recognition Using Shape Contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 4.
[25]
Ben-Chen, M., Butscher, A., Solomon, J., and Guibas, L. J. 2010. On discrete killing vector fields and patterns on surfaces. Comput. Graph. Forum 29, 5, 1701--1711.
[26]
Bengio, Y. 2009. Learning deep architectures for ai. Foundations and Trends in Machine Learning 2, 1, 1--127.
[27]
Benhabiles, H., Lavoué, G., Vandeborre, J.-P., and Daoudi, M. 2011. Learning boundary edges for 3d-mesh segmentation. Computer Graphics Forum 30, 8.
[28]
Berner, A., Bokeloh, M., Wand, M., Schilling, A., and Seidel, H.-P. 2008. A graph-based approach to symmetry detection. In Proceedings of the Eurographics / IEEE VGTC Workshop on Volume Graphics 2008, Los Angeles, California, USA, 2008, 1--8.
[29]
Besl, P. J., and McKay, N. D. 1992. A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 2.
[30]
Besl, P. J., and McKay, N. D. 1992. A method for registration of 3-d shapes. IEEE Trans. Pat. Ana. & Mach. Int. 14, 2, 239--256.
[31]
Bezdek, J. C., and Hathaway, R. J. 2003. Convergence of alternating optimization. Neural, Parallel Sci. Comput. 11, 351--368.
[32]
Biederman, I. 1987. Recognition-by-components: A theory of human image understanding. Psychological Review 94, 115--147.
[33]
Bishop, C. M. 2006. Pattern Recognition and Machine Learning. Springer.
[34]
Blanz, V., and Vetter, T. 1999. A morphable model for the synthesis of 3D faces. In Proc. of SIGGRAPH, 187--194.
[35]
Blum, M., Springenberg, J. T., Wulfing, J., and Riedmiller, M. 2012. A learned feature descriptor for object recognition in RGB-D data. In Proc. IEEE Int. Conf. on Rob. and Auto., 1298--1303.
[36]
Bo, L., Ren, X., and Fox, D. 2014. Learning hierarchical sparse features for RGB-(D) object recognition. International Journal of Robotics Research, to appear.
[37]
Bogo, F., Romero, J., Loper, M., and Black, M. J. 2014. FAUST: Dataset and evaluation for 3D mesh registration. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 3794--3801.
[38]
Bokeloh, M., Berner, A., Wand, M., Seidel, H.-P., and Schilling, A. 2009. Symmetry detection using line features. Computer Graphics Forum 28, 2, 697--706.
[39]
Bokeloh, M., Wand, M., and Seidel, H.-P. 2010. A connection between partial symmetry and inverse procedural modeling. In ACM SIGGRAPH 2010 papers, ACM, SIGGRAPH '10, 104:1--104:10.
[40]
Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. In ACM SIGGRAPH 2009 papers, ACM, SIGGRAPH '09, 77:1--77:10.
[41]
Boscaini, D., Masci, J., Melzi, S., Bronstein, M. M., Castellani, U., and Vandergheynst, P. 2015. Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. Computer Graphics Forum 34, 5.
[42]
Boyd, S., and Vandenberghe, L. 2004. Convex Optimization. Cambridge University Press.
[43]
Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1, 1--122.
[44]
Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1, 1--122.
[45]
Bronstein, M. M., and Bronstein, A. M. 2011. Shape recognition with spectral distances. IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI) 33, 5, 1065--1071.
[46]
Bronstein, M. M., Bronstein, A. M., and Kimmel, R. 2006. Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. 1168--1172.
[47]
Bronstein, A., Bronstein, M., and Kimmel, R. 2008. Numerical Geometry of Non-Rigid Shapes, 1 ed. Springer Publishing Company, Incorporated.
[48]
Bronstein, A. M., Bronstein, M. M., Ovsjanikov, M., and Guibas, L. J. 2011. Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graphics 30, 1, 1--20.
[49]
Bronstein, M. M., Glashoff, K., and Loring, T. A. 2014. Making Laplacians commute: multimodal spectral geometry using closest commuting operators. SIAM Journal on Imaging Sciences (SIIS), submitted.
[50]
Brown, B., and Rusinkiewicz, S. 2007. Global non-rigid alignment of 3-D scans. ACM Trans. Graph. 26, 3.
[51]
Campen, M., Attene, M., and Kobbelt, L. 2012. A Practical Guide to Polygon Mesh Repairing. In Eurographics tutorials.
[52]
Candès, E. J., and Plan, Y. 2010. Matrix completion with noise. Proceedings of the IEEE 98, 6, 925--936.
[53]
Candes, E. J., and Plan, Y. 2011. Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements. IEEE Trans. Inf. Theor. 57, 4, 2342--2359.
[54]
Candès, E. J., and Recht, B. 2009. Exact matrix completion via convex optimization. Found. Comput. Math. 9, 6, 717--772.
[55]
Candes, E. J., and Tao, T. 2005. Decoding by linear programming. Trans. Inf. Theor. 51, 12, 4203--4215.
[56]
Candès, E. J., Romberg, J., and Tao, T. 2006. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52, 2, 489--509.
[57]
Candès, E. J., Li, X., Ma, Y., and Wright, J. 2011. Robust principal component analysis? J. ACM 58, 3, 11:1--11:37.
[58]
Cao, C., Weng, Y., Lin, S., and Zhou, K. 2013. 3d shape regression for real-time facial animation. ACM Trans. Graph. 32, 4, 41:1--41:10.
[59]
Cao, C., Hou, Q., and Zhou, K. 2014. Displaced dynamic expression regression for real-time facial tracking and animation. ACM Trans. Graph. 33, 4, 43:1--43:10.
[60]
Cazals, F., and Pouget, M. 2003. Estimating differential quantities using polynomial fitting of osculating jets. In Proc. Symp. on Geom. Proc., 177--187.
[61]
Ceylan, D., Mitra, N. J., Zheng, Y., and Pauly, M. 2014. Coupled structure-from-motion and 3d symmetry detection for urban facades. ACM Trans. Graph. 33, 1, 2:1--2:15.
[62]
Chang, W., and Zwicker, M. 2008. Automatic registration for articulated shapes. Comput. Graph. Forum 27, 5, 1459--1468.
[63]
Chang, J. Y., Raskar, R., and Agrawal, A. K. 2009. In Proc. CVPR, 1706--1713.
[64]
Chang, W., Li, H., Mitra, N., Pauly, M., and Wand, M. 2012. Dynamic Geometry Processing. In Eurographics tutorials.
[65]
Chang, W., Li, H., Mitra, N. J., Pauly, M., and Wand, M. 2012. Dynamic geometry processing. In Eurographics 2012: Tutorial Notes.
[66]
Charpiat, G. 2009. Learning shape metrics based on deformations and transport. In NORDIA 2009.
[67]
Chaudhuri, S., and Koltun, V. 2010. Data-driven suggestions for creativity support in 3d modeling. ACM Trans. Graph. 29, 6, 183:1--183:10.
[68]
Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun, V. 2011. Probabilistic reasoning for assembly-based 3d modeling. ACM Trans. Graph. 30, 4, 35:1--35:10.
[69]
Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun, V. 2011. Probabilistic reasoning for assembly-based 3d modeling. ACM Trans. Graph. 30, 4, 35:1--35:10.
[70]
Chaudhuri, S., Kalogerakis, E., Giguere, S., and Funkhouser, T. 2013. AttribIt: Content creation with semantic attributes. UIST.
[71]
Chekuri, C., Khanna, S., Naor, J. S., and Zosin, L. 2001. Approximation algorithms for the metric labeling problem via a new linear programming formulation. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, SODA '01, 109--118.
[72]
Chen, Y., and Medioni, G. 1992. Object modelling by registration of multiple range images. Image Vision Comput. 10, 145--155.
[73]
Chen, D.-Y., Tian, X.-P., Shen, Y.-T., and Ouhyoung, M. 2003. On visual similarity based 3D model retrieval. Computer Graphics Forum 22, 3, 223--232.
[74]
Chen, D.-Y., Tian, X.-P., Shen, Y.-T., and Ouhyoung, M. 2003. On visual similarity based 3D model retrieval. Computer Graphics Forum 22, 3, 223--232.
[75]
Chen, G., Song, Y., Wang, F., and Zhang, C. 2008. Semi-supervised multi-label learning by solving a sylvester equation. In SDM {DBL 2008}, 410--419.
[76]
CHEN, X., KANG, S. B., XU, Y.-Q., DORSEY, J., and SHUM, H.-Y. 2008. Sketching reality: Realistic interpretation of architectural. ACM Trans. Graph. 27, 2, 11:1--11:21.
[77]
Chen, X., Golovinskiy, A., and Funkhouser, T. 2009. A benchmark for 3D mesh segmentation. ACM Trans. Graph. 28, 3, 73:1--73:12.
[78]
Chen, X., Saparov, A., Pang, B., and Funkhouser, T. 2012. Schelling points on 3D surface meshes. ACM Trans. Graph..
[79]
Chen, C., Weng, Y., Zhou, S., Tong, Y., and Zhou, K. 2014. Facewarehouse: a 3d facial expression database for visual computing. IEEE Trans. Vis. & Comp. Graphics 20, 3.
[80]
Chen, K., Lai, Y.-K., Wu, Y.-X., Martin, R., and Hu, S.-M. 2014. Automatic semantic modeling of indoor scenes from low-quality rgb-d data using contextual information. ACM Trans. Graph. 33, 6.
[81]
Chen, Y., Guibas, L. J., and Huang, Q.-X. 2014. Near-optimal joint object matching via convex relaxation. CoRR abs/1402.1473.
[82]
Cho, T. S., Avidan, S., and Freeman, W. T. 2010. The patch transform. IEEE Trans. Pattern Anal. Mach. Intell. 32, 8, 1489--1501.
[83]
Cho, T. S., Avidan, S., and Freeman, W. T. 2010. A probabilistic image jigsaw puzzle solver. In Proc. CVPR, 183--190.
[84]
Choi, W., Chao, Y.-W., Pantofaru, C., and Savarese, S. 2013. Understanding indoor scenes using 3d geometric phrases. In Proc. CVPR.
[85]
Choudhary, S., Trevor, A., Christensen, H., and Dellaert, F. 2014. Slam with object discovery; modeling and mapping.
[86]
Chui, H., and Rangarajan, A. 2003. A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 89, 2-3, 114--141.
[87]
Chung, F. R. K., Lu, L., and Vu, V. H. 2003. The spectra of random graphs with given expected degrees. Internet Mathematics 1, 3, 257--275.
[88]
Clarenz, U., Rumpf, M., and Telea, A. 2004. Robust feature detection and local classification for surfaces based on moment analysis. TVCG 10, 5, 516--524.
[89]
Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2004. Variational shape approximation. In ACM SIGGRAPH 2004 Papers, ACM, SIGGRAPH '04, 905--914.
[90]
Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Warner, F., and Zucker, S. 2005. Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. In PNAS, 7426--7431.
[91]
Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H. S., Finkelstein, A., Funkhouser, T., and Rusinkiewicz, S. 2008. Where do people draw lines? ACM Trans. Graph..
[92]
Constales, D. 1998. A closed formula for the moore-penrose generalized inverse of a complex matrix of given rank. Acta Math. Hungar 80, 83--88.
[93]
Cooper, M., Foote, J., Girgensohn, A., and Wilcox, L. 2005. Temporal event clustering for digital photo collections. ACM Trans. on Multi. Comp., Comm. and App. 1, 3, 269--288.
[94]
Costa, L. d. F. D., and Cesar, Jr., R. M. 2000. Shape Analysis and Classification: Theory and Practice, 1st ed. CRC Press, Inc., Boca Raton, FL, USA.
[95]
Coyne, B., and Sproat, R. 2001. Wordseye: An automatic text-to-scene conversion system. In Proc. of SIGGRAPH.
[96]
Crandall, D., Owens, A., Snavely, N., and Huttenlocher, D. 2011. Discrete-continuous optimization for large-scale structure from motion. CVPR '11, 3001--3008.
[97]
Cyr, C. M., and Kimia, B. B. 2004. A similarity-based aspect-graph approach to 3d object recognition. Int. J. Comput. Vision 57, 1, 5--22.
[98]
da Fontoura Costa, L., and Cesar Jr., R. M. 2009. Shape Classification and Analysis: Theory and Practice, 2nd ed. CRC Press, Inc., Boca Raton, FL, USA.
[99]
Dantzig, G. B. 1951. Maximization of a linear function of variables subject to linear inequalities. In Activity Analysis of Production and Allocation, Cowles Commission Monograph No. 13. John Wiley & Sons Inc., 339--347.
[100]
Dattorro, J. 2011. Convex Optimization & Euclidean Distance Geometry. Meboo Publishing USA.
[101]
2008. Proceedings of the SIAM International Conference on Data Mining, SDM 2008, April 24--26, 2008, Atlanta, Georgia, USA, SIAM.
[102]
2009. 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20--25 June 2009, Miami, Florida, USA, IEEE.
[103]
de Goes, F., Goldenstein, S., and Velho, L. 2008. A hierarchical segmentation of articulated bodies. Comput. Graph. Forum 27, 5, 1349--1356.
[104]
de Oliveira, M. C. F., and Levkowitz, H. 2003. From visual data exploration to visual data mining: a survey. IEEE Trans. Vis. & Comp. Graphics 9, 3, 378--394.
[105]
DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., and Santella, A. 2003. Suggestive contours for conveying shape. In ACM SIGGRAPH 2003 Papers, ACM, New York, NY, USA, SIGGRAPH '03, 848--855.
[106]
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Li, F.-F. 2009. In Proc. CVPR, 248--255.
[107]
Deng, J., Krause, J., and Fei-Fei, L. 2013. Fine-grained crowdsourcing for fine-grained recognition. In CVPR'13.
[108]
Dey, T. K. 2007. Curve and surface reconstruction: algorithms with mathematical analysis, vol. 23. Cambridge University Press.
[109]
Diebel, J., Thrun, S., and Bruening, M. 2006. A bayesian method for probable surface reconstruction and decimation. ACM Trans. Graph. 25, 1.
[110]
Ding, X., and Jiang, T. 2010. Spectral distributions of adjacency and laplacian matrices of random graphs. Annals of Applied Probability 20(6), 2086--2117.
[111]
do Carmo, M. 1976. Differential Geometry of Curves and Surfaces. Prentice Hall.
[112]
Domingos, P. 2012. A few useful things to know about machine learning. Communications of the ACM 55, 10, 78--87.
[113]
Dong, S., Kircher, S., and Garland, M. 2005. Harmonic functions for quadrilateral remeshing of arbitrary manifolds. Comput. Aided Geom. Des. 22, 5, 392--423.
[114]
Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and Hart, J. C. 2006. Spectral surface quadrangulation. In ACM SIGGRAPH 2006 Papers, ACM, New York, NY, USA, SIGGRAPH '06, 1057--1066.
[115]
Duda, R. O., Hart, P. E., and Stork, D. G. 2000. Pattern Classification (2Nd Edition). Wiley-Interscience.
[116]
Eitz, M., Richter, R., Boubekeur, T., Hildebrand, K., and Alexa, M. 2012. Sketch-based shape retrieval. ACM Trans. Graph. 31, 4, 5:1--5:10.
[117]
Eitz, M., Richter, R., Boubekeur, T., Hildebrand, K., and Alexa, M. 2012. Sketch-based shape retrieval. ACM Trans. Graph. 31, 4, 31:1--31:10.
[118]
Eynard, D., Kovnatsky, A., Bronstein, M. M., Glashoff, K., and Bronstein, A. M. Multimodal manifold analysis using simultaneous diagonalization of laplacians. submitted to SIAM Journal on Imaging Sciences.
[119]
Fan, L., Wang, R., Xu, L., Deng, J., and Liu, L. 2013. Modeling by drawing with shadow guidance. Computer Graphics Forum 32, 7, 157--166.
[120]
Fei-Fei, L., Fergus, R., and Perona, P. 2006. One-shot learning of object categories. IEEE Trans. Pat. Ana. & Mach. Int. 28, 4.
[121]
Fergus, R., Weiss, Y., and Torralba, A. 2009. Semi-supervised learning in gigantic image collections. In NIPS, 522--530.
[122]
Fiedler, M. 1973. Algebraic Connectivity of Graphs. Czechoslovak Mathematical Journal 23, 298--305.
[123]
Fischler, M. A., and Bolles, R. C. 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 6, 381--395.
[124]
Fish, N., Averkiou, M., van Kaick, O., Sorkine-Hornung, O., Cohen-Or, D., and Mitra, N. J. 2014. Meta-representation of shape families. ACM Trans. Graph. 33, 4, 34:1--34:11.
[125]
Fisher, M., and Hanrahan, P. 2010. Context-based search for 3d models. ACM Trans. Graph. 29, 6, 182:1--182:10.
[126]
Fisher, M., Savva, M., and Hanrahan, P. 2011. Characterizing structural relationships in scenes using graph kernels. ACM Trans. Graph. 30, 4, 34:1--34:12.
[127]
Fisher, M., Ritchie, D., Savva, M., Funkhouser, T., and Hanrahan, P. 2012. Example-based synthesis of 3d object arrangements. ACM Trans. Graph. 31, 6, 135:1--135:12.
[128]
Floriani, Leila de; Spagnuolo, M. E. 2007. Shape Analysis and Structuring. Springer. http://www.springer.com/west/home/math/analysis?SGWID=4-10044-22-173665611-detailsPage=ppmmedia---toc.
[129]
Fossati, A., Gall, J., Grabner, H., Ren, X., and Konolige, K. 2013. Consumer Depth Cameras for Computer Vision, Chapter 12. Springer.
[130]
Fouhey, D. F., Gupta, A., and Hebert, M. 2013. Data-driven 3d primitives for single image understanding. In Proc. ICCV.
[131]
Freifeld, O., and Black, M. J. 2012. Lie bodies: A manifold representation of 3d human shape. In Proceedings of the 12th European Conference on Computer Vision - Volume Part I, ECCV'12, 1--14.
[132]
Freund, Y., and Schapire, R. E. 1995. A decision-theoretic generalization of on-line learning and an application to boosting. Springer-Verlag, London, UK, UK, EuroCOLT '95, 23--37.
[133]
Frome, A., Huber, D., Kolluri, R., Bulow, T., and Malik, J. 2004. Recognizing objects in range data using regional point descriptors. In Proc. ECCV. 224--237.
[134]
Fu, H., Cohen-Or, D., Dror, G., and Sheffer, A. Upright orientation of man-made objects. SIGGRAPH '08, 42:1--42:7.
[135]
Fukunaga, K. 1990. Introduction to Statistical Pattern Recognition. Academic Press Professional, Inc.
[136]
Funkhouser, T., and Shilane, P. 2006. Partial matching of 3d shapes with priority-driven search. In Proc. Symp. on Geom. Proc.
[137]
Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., and Jacobs, D. 2003. A search engine for 3D models. ACM Trans. Graph. 22, 1, 83--105.
[138]
Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., and Dobkin, D. 2004. Modeling by example. ACM Trans. Graph. 23, 3, 652--663.
[139]
Funkhouser, T. A., Kazhdan, M. M., Min, P., and Shilane, P. 2005. Shape-based retrieval and analysis of 3d models. Commun. ACM 48, 6, 58--64.
[140]
Gal, R., Shamir, A., Hassner, T., Pauly, M., and Cohen-Or, D. 2007. Surface reconstruction using local shape priors. In Proc. Symp. on Geom. Proc., SGP '07, 253--262.
[141]
Gal, R., Shamir, A., Hassner, T., Pauly, M., and Cohen-Or, D. 2007. Surface reconstruction using local shape priors. In Proc. Symp. on Geom. Proc., 253--262.
[142]
Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D. 2009. iwires: an analyze-and-edit approach to shape manipulation. ACM Trans. Graph., 33:1--33:10.
[143]
Gao, L., Lai, Y.-K., Huang, Q., and Hu, S.-M. 2013. A data-driven approach to realistic shape morphing. Computer Graphics Forum 32, 2, 449--457.
[144]
Gelfand, N., and Guibas, L. J. 2004. Shape segmentation using local slippage analysis. In Proceedings of the 2004 Euro-graphics/ACM SIGGRAPH symposium on Geometry processing, ACM, SGP '04, 214--223.
[145]
Gelfand, N., Mitra, N. J., Guibas, L. J., and Pottmann, H. 2005. Robust global registration. In Proc. Symp. on Geom. Proc.
[146]
Giorgi, D., Biasdtti, S., and Paraboschi, L., 2007. Shrec: shape retreval contex: Watertight models track.
[147]
Giorgi, D., Biasotti, S., and Paraboschi, L., 2007. Shape retrieval contest 2007: Watertight models track.
[148]
Goldberg, D., Malon, C., and Bern, M. 2004. A global approach to automatic solution of jigsaw puzzles. Comput. Geom. Theory Appl. 28, 165--174.
[149]
Goldman, D. B., Curless, B., Hertzmann, A., and Seitz, S. M. 2005. Shape and spatially-varying brdfs from photometric stereo. In Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1 - Volume 01, ICCV '05, 341--348.
[150]
Golovinskiy, A., and Funkhouser, T. 2008. Randomized cuts for 3d mesh analysis. In ACM SIGGRAPH Asia 2008 papers, ACM, SIGGRAPH Asia '08, 145:1--145:12.
[151]
Golovinskiy, A., and Funkhouser, T. 2009. Consistent Segmentation of 3D Models. Proc. SMI 33, 3.
[152]
Golovinskiy, A., and Funkhouser, T. A. 2009. Consistent segmentation of 3d models. Computers & Graphics 33, 3, 262--269.
[153]
Golovinskiy, A., Kim, V. G., and Funkhouser, T. 2009. Shape-based Recognition of 3D Point Clouds in Urban Environments. In Proc. ICCV.
[154]
Gönen, M., and Alpaydin, E. 2011. Multiple kernel learning algorithms. J. of Mac. Learn. Res. 12, 2211--2268.
[155]
Grant, M., and Boyd, S., 2011. CVX: Matlab software for disciplined convex programming. http://www.stanford.edu/~boyd/cvx/.
[156]
Guo, X., Lin, J., Xu, K., and Jin, X. 2014. Creature grammar for creative modeling of 3d monsters. Graphical Models (Special Issue of GMP) 76, 5, 376--389.
[157]
Halldórsson, M., and Radhakrishnan, J. 1994. Greed is good: approximating independent sets in sparse and bounded-degree graphs. STOC '94, 439--448.
[158]
Hasler, N., Stoll, C., Rosenhahn, B., Thormählen, T., and Seidel, H.-P. 2009. Technical section: Estimating body shape of dressed humans. Comput. Graph. 33, 3, 211--216.
[159]
Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., and Seidel, H.-P. 2009. A statistical model of human pose and body shape. Comput. Graph. Forum 28, 2, 337--346.
[160]
Hasler, N., Thormählen, T., Rosenhahn, B., and Seidel, H.-P. 2010. Learning skeletons for shape and pose. In Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D '10, 23--30.
[161]
Hays, J., Leordeanu, M., Efros, A. A., and Liu, Y. 2006. Discovering texture regularity as a higher-order correspondence problem. In Computer Vision - ECCV 2006, 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006, Proceedings, Part II, 522--535.
[162]
Held, D., Levinson, J., Thrun, S., and Savarese, S. 2014. Combining 3d shape, color, and motion for robust anytime tracking. In RSS.
[163]
Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunii, T. L. 2001. Topology matching for fully automatic similarity estimation of 3d shapes. In Proc. of SIGGRAPH, 203--212.
[164]
Hinton, G. E., Osindero, S., and Teh, Y.-W. 2006. A fast learning algorithm for deep belief nets. Neural Computation 18, 7, 1527--1554.
[165]
Hochbaum, D. S., and Singh, V. 2009. An efficient algorithm for co-segmentation. In IEEE 12th International Conference on Computer Vision, ICCV 2009, Kyoto, Japan, September 27 - October 4, 2009, 269--276.
[166]
Hofer, M., Odehnal, B., Pottmann, H., Steiner, T., and Wallner, J. 2005. 3d shape recognition and reconstruction based on line element geometry. ICCV '05, 1532--1538.
[167]
Hoffman, D. D., and Singh, M. 1997. Salience of visual parts. Cognition 63, 1, 29--78.
[168]
Hoffman, D., Richards, W., Pentl, A., Rubin, J., and Scheuhammer, J. 1983. Parts of recognition. Cognition 18, 65--96.
[169]
Hoi, S. C., Liu, W., and Chang, S.-F. 2010. Semi-supervised distance metric learning for collaborative image retrieval and clustering. ACM Trans. Multimedia Comput. Commun. Appl. 6, 3, 18:1--18:26.
[170]
Hoiem, D., Efros, A. A., and Hebert, M. 2005. Automatic photo pop-up. ACM Trans. Graph. 24, 3, 577--584.
[171]
Holland, P. W., and Welsch, R. E. 1977. Robust regression using iteratively reweighted least-squares. Communications in Statistics: Theory and Methods A6, 813--827.
[172]
Horn, B. K. P., Hilden, H., and Negahdaripour, S. 1988. Closed-form solutions of absolute orientation using orthonormal matrices. Journal of the Optical Society 5, 1127--1135.
[173]
Horn, B. K. P. 1984. Extended Gaussian Images. Proceedings of the IEEE 72, 12, 1671--1686.
[174]
Horn, B. K. P. 1987. Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America A 4, 4, 629--642.
[175]
Hu, R., Fan, L., and Liu, L. 2012. Co-segmentation of 3d shapes via subspace clustering. Computer Graphics Forum 31, 5.
[176]
Hu, R., Fan, L., and Liu, L. 2012. Co-Segmentation of 3D shapes via subspace clustering. Computer Graphics Forum 31, 5, 1703--1713.
[177]
Hu, R., Fan, L., and Liu, L. 2012. Co-Segmentation of 3D shapes via subspace clustering. Comput. Graph. Forum 31, 5, 1703--1713.
[178]
Hu, R., Zhu, C., van Kaick, O., Liu, L., Shamir, A., and Zhang, H. 2015. Interaction context (icon): Towards a geometric functionality descriptor. ACM Trans. Graph. 34, 4, 83:1--83:12.
[179]
Huang, Q.-X., and Anguelov, D. 2010. High quality pose estimation by aligning multiple scans to a latent map. In IEEE International Conference on Robotics and Automation, ICRA 2010, Anchorage, Alaska, USA, 3-7 May 2010, 1353--1360.
[180]
Huang, Q., and Guibas, L. 2013. Consistent shape maps via semidefinite programming. Computer Graphics Forum (SGP) 32, 5, 177--186.
[181]
Huang, Q., and Guibas, L. 2013. Consistent shape maps via semidefinite programming. Computer Graphics Forum (SGP) 32, 5, 177--186.
[182]
Huang, Q., Flöry, S., Gelfand, N., Hofer, M., and Pottmann, H. 2006. Reassembling fractured objects by geometric matching. ACM Trans. Graph. 25, 3, 569--578.
[183]
Huang, Q.-X., Adams, B., and Wand, M. 2007. Bayesian surface reconstruction via iterative scan alignment to an optimized prototype. In Proc. Symp. on Geom. Proc., SGP '07, 213--223.
[184]
Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., and Bao, H. 2008. Spectral quadrangulation with orientation and alignment control. In ACM SIGGRAPH Asia 2008 papers, ACM, SIGGRAPH Asia '08, 147:1--147:9.
[185]
Huang, Q., Adams, B., Wicke, M., and Guibas, L. J. 2008. Non-rigid registration under isometric deformations. In Proc. Symp. on Geom. Proc., 1449--1457.
[186]
Huang, Q.-X., Wicke, M., Adams, B., and Guibas, L. J. 2009. Shape decomposition using modal analysis. Comput. Graph. Forum 28, 2, 407--416.
[187]
Huang, Q., Koltun, V., and Guibas, L. 2011. Joint shape segmentation using linear programming. ACM Trans. Graph. 30, 6, 125:1--125:12.
[188]
Huang, Q., Guibas, L., and Mitra, N. 2012. Near-regular structure extraction using linear programming. ACM Trans. Graph.
[189]
Huang, Q., Zhang, G.-X., Gao, L., Hu, S.-M., Butscher, A., and Guibas, L. 2012. An optimization approach for extracting and encoding consistent maps in a shape collection. ACM Trans. Graph. 31, 6, 167:1--167:11.
[190]
Huang, Q., Su, H., and Guibas, L. 2013. Fine-grained semi-supervised labeling of large shape collections. ACM Trans. Graph. 32, 6, 190:1--190:10.
[191]
Huang, S.-S., Shamir, A., Shen, C.-H., Zhang, H., Sheffer, A., Hu, S.-M., and Cohen-Or, D. 2013. Qualitative organization of collections of shapes via quartet analysis. ACM Trans. Graph. 32, 4, 71:1--71:10.
[192]
Huang, Q., Chen, Y., and Guibas, L. J., 2014. Scalable semidefinite relaxation for maximum a posterior estimation.
[193]
Huang, Q., Wang, F., and Guibas, L. 2014. Functional map networks for analyzing and exploring large shape collections. ACM Trans. Graph. 33, 4.
[194]
Huang, H., Kalogerakis, E., and Marlin, B. 2015. Analysis and synthesis of 3d shape families via deep-learned generative models of surfaces. Computer Graphics Forum 34, 5.
[195]
Huang, Q., Wang, H., and Koltun, V. 2015. Single-view reconstruction via joint analysis of image and shape collections. ACM Trans. Graph. 34, 87:1--87:10.
[196]
Huber, D. 2002. Automatic Three-dimensional Modeling from Reality. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.
[197]
Hueting, M., Ovsjanikov, M., and Mitra, N. J. 2015. Crosslink: Joint understanding of image and 3d model collections through shape and camera pose variations. ACM Trans. Graph.
[198]
IBM. 2011. Ibm ilog cplex optimization studio. http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/.
[199]
Jain, A., Thormählen, T., Ritschel, T., and Seidel, H.-P. 2012. Exploring shape variations by 3D-model decomposition and part-based recombination. Computer Graphics Forum 31, 2, 631--640.
[200]
James, D. L., and Twigg, C. D. 2005. Skinning mesh animations. ACM Trans. Graph. 24, 3, 399--407.
[201]
Jiao, F., Wang, S., Lee, C.-H., Greiner, R., and Schuurmans, D. 2006. Semi-supervised conditional random fields for improved sequence segmentation and labeling. In 21st International Conference on Computational Linguistics.
[202]
Johnson, A., and Hebert, M. 1999. Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes. IEEE Trans. Pat. Ana. & Mach. Int. 21, 5, 433--449.
[203]
Johnson, A. E., and Hebert, M. 1999. Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21, 5, 433--449.
[204]
Johnson, A. 1997. Spin-Images: A Representation for 3-D Surface Matching. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.
[205]
Joulin, A., Bach, F. R., and Ponce, J. 2010. Discriminative clustering for image co-segmentation. In Proc. CVPR, 1943--1950.
[206]
Kahraman, A., Morris, R. J., Laskowski, R. A., and Thornton, J. M. 2007. Shape variation in protein binding pockets and their ligands. Journal of Molecular Biology 368, 1, 283--301.
[207]
Kalogerakis, E., Simari, P., Nowrouzezahrai, D., and Singh, K. 2007. Robust statistical estimation of curvature on discretized surfaces. In Proc. Symp. on Geom. Proc.
[208]
Kalogerakis, E., Nowrouzezahrai, D., Simari, P., McCrae, J., Hertzmann, A., and Singh, K. 2009. Data-driven curvature for real-time line drawing of dynamic scenes. ACM Trans. Graph. 28, 1, 1--13.
[209]
Kalogerakis, E., Hertzmann, A., and Singh, K. 2010. Learning 3d mesh segmentation and labeling. ACM Trans. Graph. 29, 102:1--102:12.
[210]
Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V. 2012. A probabilistic model for component-based shape synthesis. ACM Trans. Graph. 31, 4.
[211]
Kalogerakis, E., Nowrouzezahrai, D., Breslav, S., and Hertzmann, A. 2012. Learning Hatching for Pen-and-Ink Illustration of Surfaces. ACM Trans. Graph. 31, 1.
[212]
Karp, R. 1972. Reducibility among combinatorial problems. In Complexity of Computer Computations, R. Miller and J. Thatcher, Eds. Plenum Press, 85--103.
[213]
Kass, M., Witkin, A., and Terzopoulos, D. 1988. Snakes: Active contour models. INTERNATIONAL JOURNALOF COMPUTER VISION 1, 4, 321--331.
[214]
Katz, S., and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. SIGGRAPH '03, 954--961.
[215]
Katz, S., Leifman, G., and Tal, A. 2005. Mesh segmentation using feature point and core extraction. The Visual Computer 21, 8-10, 649--658.
[216]
Kazhdan, M., Chazelle, B., Dobkin, D., Funkhouser, T., and Rusinkiewicz, S. 2003. A reflective symmetry descriptor for 3d models. Algorithmica 38, 1.
[217]
Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2003. Rotation invariant spherical harmonic representation of 3d shape descriptors. Proc. Symp. on Geom. Proc.
[218]
Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2003. Rotation invariant spherical harmonic representation of 3d shape descriptors. SGP '03, 156--164.
[219]
Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2004. Symmetry descriptors and 3d shape matching. Proc. Symp. on Geom. Proc.
[220]
Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2004. Shape matching and anisotropy. In ACM SIGGRAPH 2004 Papers, ACM, SIGGRAPH '04, 623--629.
[221]
Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2004. Symmetry descriptors and 3d shape matching. In Proc. Symp. on Geom. Proc., ACM, SGP '04, 115--123.
[222]
Kazhdan, M., Bolitho, M., and Hoppe, H. 2006. Poisson surface reconstruction. In Proc. Symp. on Geom. Proc., SGP '06, 61--70.
[223]
Kholgade, N., Simon, T., Efros, A., and Sheikh, Y. 2014. 3d object manipulation in a single photograph using stock 3d models. ACM Trans. Graph. 33, 4, 127:1--127:12.
[224]
Kilian, M., Mitra, N. J., and Pottmann, H. 2007. Geometric modeling in shape space. In ACM SIGGRAPH 2007 papers, ACM, SIGGRAPH '07.
[225]
Kim, V. G., Lipman, Y., Chen, X., and Funkhouser, T. A. 2010. Möbius transformations for global intrinsic symmetry analysis. Comput. Graph. Forum 29, 5, 1689--1700.
[226]
Kim, V. G., Lipman, Y., and Funkhouser, T. 2011. Blended intrinsic maps. ACM Trans. Graph. 30, 4, 79:1--79:12.
[227]
Kim, V. G., Li, W., Mitra, N. J., DiVerdi, S., and Funkhouser, T. 2012. Exploring collections of 3D models using fuzzy correspondences. ACM Trans. Graph. 31, 4, 54:1--54:11.
[228]
Kim, Y. M., Mitra, N. J., Yan, D.-M., and Guibas, L. 2012. Acquiring 3d indoor environments with variability and repetition. ACM Trans. Graph. 31, 6, 138:1--138:11.
[229]
Kim, V. G., Li, W., Mitra, N. J., Chaudhuri, S., DiVerdi, S., and Funkhouser, T. 2013. Learning part-based templates from large collections of 3D shapes. ACM Trans. Graph. 32, 4, 70:1--70:12.
[230]
Kim, V. G., Li, W., Mitra, N. J., Chaudhuri, S., DiVerdi, S., and Funkhouser, T. 2013. Learning Part-based Templates from Large Collections of 3D Shapes. Transactions on Graphics (Proc. of SIGGRAPH) 32, 4.
[231]
Kim, Y. M., Mitra, N. J., Huang, Q.-X., and Guibas, L. J. 2013. Guided real-time scanning of indoor objects. Comput. Graph. Forum 32, 7, 177--186.
[232]
Kim, V. G., Chaudhuri, S., Guibas, L., and Funkhouser, T. 2014. Shape2Pose: Human-Centric Shape Analysis. ACM Trans. Graph. 33, 4.
[233]
Kin-Chung Au, O., Tai, C.-L., Cohen-Or, D., Zheng, Y., and Fu, H. 2010. Electors voting for fast automatic shape correspondence. Computer Graphics Forum 29, 2, 645--654.
[234]
Kleinberg, J., and Tardos, E. 2002. Approximation algorithms for classification problems with pairwise relationships: metric labeling and markov random fields. J. ACM 49, 616--639.
[235]
Kobbelt, L., Campagna, S., and Seidel, H. P. 1998. A general framework for mesh decimation. Citeseer, 43--50.
[236]
Kokkinos, I., Bronstein, M., Litman, R., and Bronstein, A. 2012. Intrinsic shape context descriptors for deformable shapes. In Proc. CVPR.
[237]
Koller, D., and Friedman, N. 2009. Probabilistic Graphical Models: Principles and Techniques. MIT Press.
[238]
Koller, D., and Friedman, N. 2009. Probabilistic Graphical Models: Principles and Techniques. MIT Press.
[239]
Kolmogorov, V. 2006. Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1568--1583.
[240]
Komodakis, N., Paragios, N., and Tziritas, G. 2007. Mrf optimization via dual decomposition: Message-passing revisited. Computer Vision, IEEE International Conference on 0, 1--8.
[241]
Kovnatsky, A., Bronstein, M. M., Bronstein, A. M., Glashoff, K., and Kimmel, R. 2013. Coupled quasi-harmonic bases. In Eurographics'13, 439--448.
[242]
Kraevoy, V., and Sheffer, A. 2004. Cross-parameterization and compatible remeshing of 3d models. In ACM SIGGRAPH 2004 Papers, ACM, SIGGRAPH '04, 861--869.
[243]
Kraevoy, V., Sheffer, A., Shamir, A., and Cohen-Or, D. 2008. Non-homogeneous resizing of complex models. In ACM SIGGRAPH Asia 2008 papers, ACM, SIGGRAPH Asia '08, 111:1--111:9.
[244]
Kreavoy, V., Julius, D., and Sheffer, A. 2007. Model composition from interchangeable components. In Proc. of Pacific Graphics, IEEE Computer Society, 129--138.
[245]
Krishnan, S., Lee, P. Y., Moore, J. B., and Venkatasubramanian, S. 2005. Global registration of multiple 3d point sets via optimization-on-a-manifold. SGP '05.
[246]
Krizhevsky, A., Sutskever, I., and Hinton, G. E. 2012. Imagenet classification with deep convolutional neural networks. In Proc. NIPS.
[247]
Kuhn, H., and Tucker, A. 1951. Nonlinear programming. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, California, J. Neyman, Ed., 481--492.
[248]
Kumar, M. P., Kolmogorov, V., and Torr, P. H. S. 2009. An analysis of convex relaxations for MAP estimation of discrete MRFs. Journal of Machine Learning Research 10, 71--106.
[249]
Lafferty, J. D., McCallum, A., and Pereira, F. C. N. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. 282--289.
[250]
Laga, H., Mortara, M., and Spagnuolo, M. 2013. Geometry and context for semantic correspondences and functionality recognition in man-made 3d shapes. ACM Trans. Graph. 32, 5.
[251]
Lai, Y.-K., Hu, S.-M., Martin, R. R., and Rosin, P. L. 2008. Fast mesh segmentation using random walks. In Proceedings of the 2008 ACM symposium on Solid and physical modeling, ACM, SPM '08, 183--191.
[252]
Lai, K., Bo, L., and Fox, D. 2013. Unsupervised feature learning for 3d scene labeling. In Proc. IEEE Int. Conf. on Rob. and Auto.
[253]
Lee, J., and Funkhouser, T. 2008. Sketch-based search and composition of 3d models. In Proc. SBIM.
[254]
Lee, Y. J., Zitnick, L., and Cohen, M. 2011. Shadowdraw: Real-time user guidance for freehand drawing. ACM Trans. Graph. 30, 4, 27:1--27:9.
[255]
Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Trans. Graph. 22, 2, 234--257.
[256]
Leordeanu, M., and Hebert, M. 2005. A spectral technique for correspondence problems using pairwise constraints. ICCV '05, 1482--1489.
[257]
Leordeanu, M., and Hebert, M. 2006. Efficient map approximation for dense energy functions. 545--552.
[258]
Levin, A., Fergus, R., Durand, F., and Freeman, W. T. 2007. Image and depth from a conventional camera with a coded aperture. In ACM SIGGRAPH 2007 papers, ACM, SIGGRAPH '07.
[259]
Levy, B., and Zhang, H. 2011. Elements of geometry processing. In Invited SIGGRAPH Asia Courses.
[260]
Li, M., Langbein, F. C., and Martin, R. R. 2006. Constructing regularity feature trees for solid models. In Proc. Geometric Modeling and Processing; LNCS, Springer, 267--286.
[261]
Li, H., Sumner, R. W., and Pauly, M. 2008. Global correspondence optimization for non-rigid registration of depth scans. Computer Graphics Forum 27, 5, 1421--1430.
[262]
Li, H., Weise, T., and Pauly, M. 2010. Example-based facial rigging. ACM Trans. Graph. 29, 4, 32:1--32:6.
[263]
Li, Y., Wu, X., Chrysathou, Y., Sharf, A., Cohen-Or, D., and Mitra, N. J. 2011. Globfit: consistently fitting primitives by discovering global relations. In ACM SIGGRAPH 2011 papers, ACM, SIGGRAPH '11, 52:1--52:12.
[264]
Li, B., Godil, A., Aono, M., Bai, X., Furuya, T., Li, L., Lopez-Sastre, R., Johan, H., Ohbuchi, R., Redondo-Cabrera, C., Tatsuma, A., Yanagimachi, T., and Zhang, S. 2012. Shrec'12 track: Generic 3d shape retrieval. Eurographics Workshop on 3D Object Retrieval.
[265]
Li, H., Yu, J., Ye, Y., and Bregler, C. 2013. Realtime facial animation with on-the-fly correctives. ACM Trans. Graph. 32, 4, 42:1--42:10.
[266]
Li, B., Lu, Y., Li, C., Godil, A., Schreck, T., Aono, M., Chen, Q., Chowdhury, N. K., Fang, B., Furuya, T., Johan, H., Kosaka, R., Koyanagi, H., Ohbuchi, R., and Tatsuma, A. 2014. Shrec' 14 track: Large scale comprehensive 3d shape retrieval. Eurographics Workshop on 3D Object Retrieval, 131--140.
[267]
Li, Y., Dai, A., Guibas, L., and Niessner, M. 2015. Database-assisted object retrieval for real-time 3d reconstruction. In Computer Graphics Forum, vol. 34.
[268]
Li, Y., Su, H., Qi, C. R., Fish, N., Cohen-Or, D., and Guibas, L. 2015. Joint embeddings of shapes and images via cnn image purification. ACM Trans. Graph.
[269]
Li, S. Z. 2009. Markov Random Field Modeling in Image Analysis, 3rd ed. Springer Publishing Company, Incorporated.
[270]
Lin, H.-Y. S., Liao, H.-Y. M., and Lin, J.-C. 2007. Visual salience-guided mesh decomposition. IEEE Transactions on Multimedia 9, 1, 46--57.
[271]
Lin, Z., Chen, M., and Ma, Y. 2011. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices.
[272]
Lipman, Y., and Funkhouser, T. 2009. Mobius voting for surface correspondence. ACM Trans. Graph. 28, 3.
[273]
Lipman, Y., Sorkine, O., Levin, D., and Cohen-Or, D. 2005. Linear rotation-invariant coordinates for meshes. In ACM SIGGRAPH 2005 Papers, ACM, SIGGRAPH '05, 479--487.
[274]
Lipp, M., Wonka, P., and Wimmer, M. 2008. Interactive visual editing of grammars for procedural architecture. In ACM SIGGRAPH 2008 papers, ACM, SIGGRAPH '08, 102:1--102:10.
[275]
Litman, R., Bronstein, A. M., Bronstein, M. M., and Castellani, U. 2014. Supervised learning of bag-of-features shape descriptors using sparse coding. SGP.
[276]
Liu, R., and 0002, H. Z. 2007. Mesh segmentation via spectral embedding and contour analysis. Comput. Graph. Forum 26, 3, 385--394.
[277]
Liu, Y., Lin, W.-C., and Hays, J. 2004. Near-regular texture analysis and manipulation. In ACM SIGGRAPH 2004 Papers, ACM, New York, NY, USA, SIGGRAPH '04, 368--376.
[278]
Liu, Y., Pottmann, H., Wallner, J., Yang, Y.-L., and Wang, W. 2006. Geometric modeling with conical meshes and developable surfaces. In ACM SIGGRAPH 2006 Papers, ACM, New York, NY, USA, SIGGRAPH '06, 681--689.
[279]
Liu, Y., Jin, R., and Yang, L. 2006. Semi-supervised multi-label learning by constrained non-negative matrix factorization. AAAI'06, 421--426.
[280]
Liu, S., Martin, R. R., Langbein, F. C., and Rosin, P. L. 2007. Segmenting periodic reliefs on triangle meshes. In IMA Conference on the Mathematics of Surfaces, 290--306.
[281]
Liu, W., Wang, J., and Chang, S.-F. 2012. Robust and scalable graph-based semisupervised learning. Proceedings of the IEEE 100, 9, 2624--2638.
[282]
Liu, T., Chaudhuri, S., Kim, V., Huang, Q.-X., Mitra, N. J., and Funkhouser, T. 2014. Creating consistent scene graphs using a probabilistic grammar. ACM Trans. Graph. 33, 6, to appear.
[283]
Liu, T., Hertzmann, A., Li, W., and Funkhouser, T. 2015. Style compatibility for 3d furniture models. ACM Trans. Graph. 34, 4, 85:1--85:9.
[284]
Ljupčo Todorovski, S. D. 2006. Integrating knowledge-driven and data-driven approaches to modeling. Ecological Modelling 194, 1--3, 3---13.
[285]
Lloyd, S. P. 1982. Least squares quantization in pcm. IEEE Transactions on Information Theory 28, 129--137.
[286]
Loeff, N., Farhadi, A., Endres, I., and Forsyth, D. 2009. Unlabeled data improves word prediction. In ICCV'09, 956--962.
[287]
Loper, M. M., Mahmood, N., and Black, M. J. 2014. MoSh: Motion and shape capture from sparse markers. ACM Trans. Graph. 33, 6, 220:1--220:13.
[288]
Luenberger, D. G., and Ye, Y. 2008. Linear and Nonlinear Programming, Third Edition. Springer.
[289]
Lun, Z., Kalogerakis, E., and Sheffer, A. 2015. Elements of style: Learning perceptual shape style similarity. ACM Trans. Graph. 34, 4, 84:1--84:14.
[290]
Lv, J., Chen, X., Huang, J., and Bao, H. 2012. Semi-supervised mesh segmentation and labeling. Comp. Graph. Forum 31, 7--2.
[291]
Ma, C., Huang, H., Sheffer, A., Kalogerakis, E., and Wang, R. 2014. Analogy-driven 3d style transfer. Computer Graphics Forum 33, 2, 175--184.
[292]
Mangan, A. P., and Whitaker, R. T. 1999. Partitioning 3d surface meshes using watershed segmentation. IEEE Trans. Vis. Comput. Graph. 5, 308--321.
[293]
Manning, C. D., Raghavan, P., and Schütze, H. 2008. Introduction to Information Retrieval. Cambridge University Press, New York, NY, USA.
[294]
Marande, W., and Burger, G. 2007. Mitochondrial dna as a genomic jigsaw puzzle. Science 318, 415.
[295]
Markovsky, I. 2012. Low Rank Approximation: Algorithms, Implementation, Applications. Springer.
[296]
Martinet, A., Soler, C., Holzschuch, N., and Sillion, F. X. 2006. Accurate detection of symmetries in 3d shapes. ACM Trans. Graph. 25, 439--464.
[297]
Martinet, A. 2007. Structuring 3D Geometry based on Symmetry and Instancing Information. These, Institut National Poly-technique de Grenoble - INPG.
[298]
Mattausch, O., Panozzo, D., Mura, C., Sorkine-Hornung, O., and Pajarola, R. 2014. Object detection and classification from large-scale cluttered indoor scans. Computer Graphics Forum 33, 2.
[299]
McClure, S. G., and D.E. 1987. Statistical methods for tomo-graphic image reconstruction. In Proceedings of the 46th Session of the International Statistical Institute, Bulletin of the ISI, 52.
[300]
Mémoli, F., and Sapiro, G. 2005. A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics 5, 3, 313--347.
[301]
Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. 2011. Interactive furniture layout using interior design guidelines. ACM Trans. Graph. 30, 4, 87:1--87:9.
[302]
Merrell, P. 2007. Example-based model synthesis. In Proc. I3D, 105--112.
[303]
Miller, G. A. 1995. Wordnet: A lexical database for english. Communications of the ACM 38, 39--41.
[304]
Min, P., Halderman, A., Kazhdan, M., and Funkhouser, T. 2003. Early experiences with a 3D model search engine. In Web3D Symposium.
[305]
Min, P., Kazhdan, M., and Funkhouser, T. 2004. A comparison of text and shape matching for retrieval of online 3D models. In European Conference on Digital Libraries.
[306]
Mitchell, J. S. B., Mount, D. M., and Papadimitriou, C. H. 1987. The discrete geodesic problem. SIAM J. Comput. 16, 4.
[307]
Mitra, N. J., Guibas, L. J., and Pauly, M. 2006. Partial and approximate symmetry detection for 3d geometry. SIGGRAPH '06, 560--568.
[308]
Mitra, N. J., Bronstein, A. M., and Bronstein, M. M. 2010. Intrinsic regularity detection in 3d geometry. In Computer Vision - ECCV 2010, 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part III, 398--410.
[309]
Mitra, N., Wand, M., Zhang, H., Cohen-Or, D., Kim, V., and Huang, Q.-X. 2014. Structure-aware shape processing. SIGGRAPH Course.
[310]
Moreels, P., and Perona, P. 2007. Evaluation of features detectors and descriptors based on 3d objects. Int. J. Comput. Vision 73, 3, 263--284.
[311]
Müller, P., Wonka, P., Haegler, S., Ulmer, A., and Van Gool, L. 2006. Procedural modeling of buildings. ACM Trans. Graph., 614--623.
[312]
Müller, P., Zeng, G., Wonka, P., and Van Gool, L. 2007. Image-based procedural modeling of facades. In ACM SIGGRAPH 2007 papers, ACM, New York, NY, USA, SIGGRAPH '07.
[313]
Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., and Woods, D. L. 2002. Shape perception reduces activity in human primary visual cortex. Proc. Natl. Acad. Sci. 99, 23, 15164---15169.
[314]
Nan, L., Xie, K., and Sharf, A. 2012. A search-classify approach for cluttered indoor scene understanding. ACM Trans. Graph. 31, 6, 137:1--137:10.
[315]
Natterer, J., Burger, N., and Müller, A. 2002. The roof structure "Expodach" at theworld exhibition Hannover. In Proc. 5th Intl. Conf. Space Structures, 185--193.
[316]
Ng, A. Y., Jordan, M. I., and Weiss, Y. 2001. On spectral clustering: Analysis and an algorithm. In ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS, MIT Press, vol. 14, 849--856.
[317]
Ng, A. Y. 2004. Feature selection, l1 vs. l2 regularization, and rotational invariance. In ICML.
[318]
Nguyen, G. P., and Worring, M. 2008. Interactive access to large image collections using similarity-based visualization. J. Visual Lang. Comp. 19, 2, 203--224.
[319]
Nguyen, A., Ben-Chen, M., Welnicka, K., Ye, Y., and Guibas, L. 2011. An optimization approach to improving collections of shape maps. Computer Graphics Forum 30, 5, 1481--1491.
[320]
Nocedal, J., and Wright, S. J. 2006. Numerical Optimization. Springer.
[321]
Novotni, M., and Klein, R. 2003. 3d zernike descriptors for content based shape retrieval. solid modeling.
[322]
Ohbuchi, R., and Furuya, T. 2010. Distance metric learning and feature combination for shape-based 3d model retrieval. In Proceedings of the ACM Workshop on 3D Object Retrieval, ACM, New York, NY, USA, 3DOR '10, 63--68.
[323]
Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. 2002. Shape distributions. ACM Trans. Graph. 21, 807--832.
[324]
Ovsjanikov, M., Sun, J., and Guibas, L. J. 2008. Global intrinsic symmetries of shapes. Comput. Graph. Forum 27, 5, 1341--1348.
[325]
Ovsjanikov, M., Mérigot, Q., Mémoli, F., and Guibas, L. J. 2010. One point isometric matching with the heat kernel. Computer Graphics Forum 29, 5, 1555--1564.
[326]
Ovsjanikov, M., Li, W., Guibas, L., and Mitra, N. J. 2011. Exploration of continuous variability in collections of 3d shapes. ACM Trans. Graph. 30, 4, 33:1--33:10.
[327]
Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., and Guibas, L. 2012. Functional maps: A flexible representation of maps between shapes. ACM Trans. Graph. 31, 4, 30:1--30:11.
[328]
Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., and Guibas, L. 2012. Functional maps: A flexible representation of maps between shapes. ACM Trans. Graph. 31, 4.
[329]
Ovsjanikov, M., Ben-Chen, M., Chazal, F., and Guibas, L. J. 2013. Analysis and visualization of maps between shapes. Comput. Graph. Forum 32, 6, 135--145.
[330]
Pachauri, D., Kondor, R., and Singh, V. 2013. Solving the multi-way matching problem by permutation synchronization. In Proc. NIPS, 1860--1868.
[331]
Palmer, S. E. 1999. Vision Science: Photons to Phenomenology. MIT Press.
[332]
Pan, S. J., and Yang, Q. 2010. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 10, 1345--1359.
[333]
Park, M., Brocklehurst, K., Collins, R. T., and Liu, Y. 2009. Deformed lattice detection in real-world images using mean-shift belief propagation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1804--1816.
[334]
Paulovich, F., Eler, D., Poco, J., Botha, C., Minghim, R., and Nonato, L. 2011. Piecewise laplacian-based projection for interactive data exploration and organization. Computer Graphics Forum 30, 3, 1091--1100.
[335]
Pauly, M., Keiser, R., and Gross, M. 2003. Multi-scale feature extraction on point-sampled surfaces. Comput. Graph. Forum (Proc. Eurographics) 22, 3, 281--290.
[336]
Pauly, M., Mitra, N. J., Giesen, J., Gross, M., and Guibas, L. J. 2005. Example-based 3d scan completion. In Proc. Symp. on Geom. Proc., SGP '05.
[337]
Pauly, M., Mitra, N. J., Giesen, J., Gross, M., and Guibas, L. J. 2005. Example-based 3d scan completion. In Proc. Symp. on Geom. Proc., SGP '05.
[338]
Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., and Guibas, L. J. 2008. Discovering structural regularity in 3d geometry. In ACM SIGGRAPH 2008 papers, ACM, New York, NY, USA, SIGGRAPH '08, 43:1--43:11.
[339]
Pekelny, Yuri, Gotsman, and Craig. 2008. Articulated object reconstruction and markerless motion capture from depth video. Computer Graphics Forum 27, 2, 399--408.
[340]
Pirazzi, C., and Weinand, Y. 2006. Geodesic lines on free-form surfaces:optimized grids for timber rib shells. In Proc. World Conference on Timber Engineering. 7pp.
[341]
Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and Funkhouser, T. 2006. A planar-reflective symmetry transform for 3d shapes. ACM Trans. Graph. 25, 3.
[342]
Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and Funkhouser, T. 2006. A planar-reflective symmetry transform for 3d shapes. In ACM SIGGRAPH 2006 Papers, ACM, New York, NY, USA, SIGGRAPH '06, 549--559.
[343]
Pons-Moll, G., Romero, J., Mahmood, N., and Black, M. 2015. Dyna: A model of dynamic human shape in motion. ACM Trans. Graph. 34, 4, to appear.
[344]
Pottmann, H., Liu, Y., Wallner, J., Bobenko, A., and Wang, W. 2007. Geometry of multi-layer freeform structures for architecture. In ACM SIGGRAPH 2007 papers, ACM, New York, NY, USA, SIGGRAPH '07.
[345]
Pottmann, H., Schiftner, A., Bo, P., Schmiedhofer, H., Wang, W., Baldassini, N., and Wallner, J. 2008. Freeform surfaces from single curved panels. In ACM SIGGRAPH 2008 papers, ACM, New York, NY, USA, SIGGRAPH '08, 76:1--76:10.
[346]
Pottmann, H., Wallner, J., Huang, Q.-X., and Yang, Y.-L. 2009. Integral invariants for robust geometry processing. Comput. Aided Geom. Des. 26, 37--60.
[347]
Pottmann, H., Huang, Q., Deng, B., Schiftner, A., Kilian, M., Guibas, L., and Wallner, J. 2010. Geodesic patterns. In ACM SIGGRAPH 2010 papers, ACM, New York, NY, USA, SIGGRAPH '10, 43:1--43:10.
[348]
Quattoni, A., and Torralba, A. 2009. Recognizing indoor scenes. In Proc. CVPR, 413--420.
[349]
Rand, W. M. 1971. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66, 336, 846--850.
[350]
Ravikumar, P., Agarwal, A., and Wainwright, M. J. 2010. Message-passing for graph-structured linear programs: Proximal methods and rounding schemes. J. Mach. Learn. Res. 11, 1043--1080.
[351]
Ray, N., Li, W. C., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 1460--1485.
[352]
Ren, X., and Malik, J. 2003. Learning a classification model for segmentation. In Proceedings of the Ninth IEEE International Conference on Computer Vision - Volume 2, IEEE Computer Society, Washington, DC, USA, ICCV '03, 10--17.
[353]
Ren, X., and Ramanan, D. 2013. Histograms of sparse codes for object detection. In Proc. CVPR, 3246--3253.
[354]
Resende, M. G. C., Ramakrishnan, K. G., and Drezner, Z. 1995. Computing lower bounds for the quadratic assignment problem with an interior point algorithm for linear programming. Operations Research 43, 781--791.
[355]
Rifkin, R., and Klautau, A. 2004. In defense of one-vs-all classification. J. Mach. Learn. Res. 5, 101--141.
[356]
Ritchie, D. W., and Kemp, G. J. L. 1999. Protein docking using spherical polar fourier correlations. Proteins 39, 178--194.
[357]
Roberts, R., Sinha, S. N., Szeliski, R., and Steedly, D. 2011. Structure from motion for scenes with large duplicate structures. In Proc. CVPR, 3137--3144.
[358]
Rother, C., Minka, T., Blake, A., and Kolmogorov, V. 2006. Cosegmentation of image pairs by histogram matching - incorporating a global constraint into mrfs. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 1, IEEE Computer Society, Washington, DC, USA, 993--1000.
[359]
Rubner, Y., Tomasi, C., and Guibas, L. J. 2000. The earth mover's distance as a metric for image retrieval. Int. J. Comput. Vision 40, 2, 99--121.
[360]
Russell, B., Efros, A., Sivic, J., Freeman, W., and Zisserman, A. 2009. Segmenting scenes by matching image composites. Advances in Neural Information Processing Systems, 1--9.
[361]
Rustamov, R. M., Ovsjanikov, M., Azencot, O., BenChen, M., Chazal, F., and Guibas, L. 2013. Map-based exploration of intrinsic shape differences and variability. ACM Trans. Graph. 32, 4, 72:1--72:12.
[362]
Salas-Moreno, R. F., Newcombe, R. A., Strasdat, H., Kelly, P. H. J., and Davison, A. J. 2013. SLAM++: simultaneous localisation and mapping at the level of objects. In Proc. CVPR, IEEE, 1352--1359.
[363]
Satkin, S., Lin, J., and Hebert, M. 2012. Data-driven scene understanding from 3d models. In Proc. BMVC, 128:1--128:11.
[364]
Saupe, D., and Vranic, D. V. 2001. 3d model retrieval with spherical harmonics and moments. In Proceedings of the 23rd DAGM-Symposium on Pattern Recognition, 392--397.
[365]
Saxena, A., Sun, M., and Ng, A. Y. 2009. Make3d: Learning 3d scene structure from a single still image. IEEE Trans. Pattern Anal. Mach. Intell. 31, 5, 824--840.
[366]
Schaefer, S., and Yuksel, C. 2007. Example-based skeleton extraction. In Proc. Symp. on Geom. Proc., 153--162.
[367]
Schaefer, S., and Yuksel, C. 2007. Example-based skeleton extraction. In Proc. Symp. on Geom. Proc., 153--162.
[368]
Schaffalitzky, F., and Zisserman, A. 1999. Geometric grouping of repeated elements within images. In Shape, Contour and Grouping in Computer Vision, Springer-Verlag, London, UK, 165--181.
[369]
Schlesinger, D., and Flach, B. 2006. Transforming an arbitrary minsum problem into a binary one. Dresden University of Technology Tech Rep, Technical Report TUD-FI06-01, 1--16.
[370]
Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., and Wolfson, H. J. 2005. Geometry-based flexible and symmetric protein docking. Proteins 60, 2, 224--231.
[371]
Schreiner, J., Asirvatham, A., Praun, E., and Hoppe, H. 2004. Inter-surface mapping. In ACM SIGGRAPH 2004 Papers, ACM, New York, NY, USA, SIGGRAPH '04, 870--877.
[372]
Schrijver, A. 1986. Theory of linear and integer programming. John Wiley & Sons, Inc., New York, NY, USA.
[373]
Schulz, A., Shamir, A., Levin, D. I. W., Sitthi-amorn, P., and Matusik, W. 2014. Design and fabrication by example. ACM Trans. Graph. 33, 4.
[374]
Secord, A., Lu, J., Finkelstein, A., Singh, M., and Nealen, A. 2011. Perceptual models of viewpoint preference. ACM Trans. Graph. 30, 5.
[375]
Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. SIGGRAPH '86, 151--160.
[376]
Shakhnarovich, G., Viola, P., and Darrell, T. 2003. Fast pose estimation with parameter-sensitive hashing. In Proceedings of the Ninth IEEE International Conference on Computer Vision - Volume 2, IEEE Computer Society, Washington, DC, USA, ICCV '03, 750--.
[377]
Shamir, A. 2008. A survey on mesh segmentation techniques. Comput. Graph. Forum 27, 6, 1539--1556.
[378]
Shao, T., Xu, W., Zhou, K., Wang, J., Li, D., and Guo, B. 2012. An interactive approach to semantic modeling of indoor scenes with an rgbd camera. ACM Trans. Graph. 31, 6, 136:1--136:11.
[379]
Shapira, L., Shamir, A., and Cohen-Or, D. 2008. Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24, 249--259.
[380]
Shapira, L., Shalom, S., Shamir, A., Zhang, R. H., and Cohen-Or, D. 2010. Contextual Part Analogies in 3D Objects. International Journal of Computer Vision 89, 2, 309--315.
[381]
Sharf, A., Lewiner, T., Shklarski, G., Toledo, S., and Cohen-Or, D. 2007. Interactive topology-aware surface reconstruction. In ACM SIGGRAPH 2007 papers, ACM, SIGGRAPH '07.
[382]
Shen, C.-H., Fu, H., Chen, K., and Hu, S.-M. 2012. Structure recovery by part assembly. ACM Trans. Graph. 31, 6, 180:1--180:11.
[383]
Shi, J., and Malik, J. 2000. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888--905.
[384]
Shilane, P., and Funkhouser, T. 2007. Distinctive regions of 3d surfaces. ACM Trans. Graph. 26, 2.
[385]
Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T. 2004. The princeton shape benchmark. In Proc. SMI, IEEE Computer Society, Washington, DC, USA, 167--178.
[386]
Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T. 2004. The Princeton shape benchmark. In Shape Modeling International.
[387]
Shlafman, S., Tal, A., and Katz, S. 2002. Metamorphosis of polyhedral surfaces using decomposition. Comput. Graph. Forum 21, 3.
[388]
Shotton, J., Winn, J., Rother, C., and Criminisi, A. 2009. Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. Int. J. Comput. Vision 81, 2--23.
[389]
Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., and Blake, A. 2011. Real-time human pose recognition in parts from single depth images. In Proc. CVPR.
[390]
Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., and Cohen-Or, D. 2011. Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. Graph. 30, 6, 126:1--126:10.
[391]
Silberman, N., Kohli, P., Hoiem, D., and Fergus, R. 2012. Indoor segmentation and support inference from rgbd images. In Proc. ECCV.
[392]
Simari, P., Kalogerakis, E., and Singh, K. 2006. Folding meshes: hierarchical mesh segmentation based on planar symmetry. In Proc. Symp. on Geom. Proc., SGP '06, 111--119.
[393]
Simari, P. D., Nowrouzezahrai, D., Kalogerakis, E., and Singh, K. 2009. Multi-objective shape segmentation and labeling. Computer Graphics Forum 28, 5, 1415--1425.
[394]
Sims, K. 1991. Artificial evolution for computer graphics. In Proc. of SIGGRAPH, 319--328.
[395]
Singer, A., and Wu, H.-T., 2011. Vector diffusion maps and the connection laplacian.
[396]
Snavely, N., Seitz, S. M., and Szeliski, R. 2006. Photo tourism: Exploring image collections in 3d. ACM Trans. Graph. 25, 3, 835--846.
[397]
Snavely, N., Seitz, S. M., and Szeliski, R. 2006. Photo tourism: Exploring photo collections in 3d. ACM Trans. Graph. 25, 3, 835--846.
[398]
Socher, R., Huval, B., Bhat, B., Manning, C. D., and Ng, A. Y. 2012. Convolutional-recursive deep learning for 3d object classification. In Proc. NIPS, 665--673.
[399]
Solomon, J., Ben-Chen, M., Butscher, A., and Guibas, L. J. 2011. Discovery of intrinsic primitives on triangle meshes. Comput. Graph. Forum 30, 2, 365--374.
[400]
Solomon, J., Nguyen, A., Butscher, A., Ben-Chen, M., and Guibas, L. 2012. Soft maps between surfaces. In Proc. SGP 2012.
[401]
Solomon, J., Nguyen, A., Butscher, A., Ben-Chen, M., and Guibas, L. 2012. Soft maps between surfaces. Computer Graphics Forum 31, 5, 1617--1626.
[402]
Solomon, J. 2015. Numerical algorithms. AK Peters/CRC Press.
[403]
Song, S., and Xiao, J. 2014. Sliding shapes for 3D object detection in depth images. In Proc. ECCV.
[404]
Sontag, D., and Jaakkola, T. 2009. Tree block coordinate descent for MAP in graphical models. Journal of Machine Learning Research - Proceedings Track 5, 544--551.
[405]
Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proc. Symp. on Geom. Proc., 109--116.
[406]
Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proc. Symp. on Geom. Proc., ACM, New York, NY, USA, SGP '04, 175--184.
[407]
Spuybroek, L. 2004. NOX: Machining Architecture. Thames & Hudson.
[408]
Stava, O., Benes, B., Mech, R., Aliga, D., and Kristof, P. 2010. Inverse procedural modeling by automatic generation of L-systems. Computer Graphics Forum 29, 2, 665--674.
[409]
Su, H., Huang, Q.-X., Mitra, N. J., Li, Y., and Guibas, L. J. 2014. Estimating image depth using shape collections. ACM Trans. Graph. 33, 4, 37:1--37:11.
[410]
Su, H., Maji, S., Kalogerakis, E., and Learned-Miller, E. 2015. Multi-view convolutional neural networks for 3d shape recognition. In Proc. ICCV.
[411]
Su, H., Qi, C. R., Li, Y., and Guibas, L. J. 2015. Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model views. In The IEEE International Conference on Computer Vision (ICCV).
[412]
Su, H., Savva, M., Yi, L., Chang, A. X., Song, S., Yu, F., Li, Z., Xiao, J., Huang, Q., Savarese, S., Funkhouser, T., Hanrahan, P., and Guibas, L. J., 2015. ShapeNet: An information-rich 3d model repository. http://shapenet.cs.stanford.edu.
[413]
Su, H., Qi, C., Niessner, M., Dai, A., Yan, M., and Guibas, L. 2016. Volumetric and multi-view cnns for object classification on 3d data. CVPR.
[414]
Sumner, R. W., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graph. 23, 3, 399--405.
[415]
Sumner, R. W., Schmid, J., and Pauly, M. 2007. Embedded deformation for shape manipulation. In ACM SIGGRAPH 2007 papers, ACM, New York, NY, USA, SIGGRAPH '07.
[416]
Sun, J., Ovsjanikov, M., and Guibas, L. 2009. A concise and provably informative multi-scale signature based on heat diffusion. In SGP, 1383--1392.
[417]
Sun, J., Ovsjanikov, M., and Guibas, L. 2009. A concise and provably informative multi-scale signature based on heat diffusion. In Computer Graphics Forum, 1383--1392.
[418]
Sundar, H., Silver, D., N., G., and Dickenson, S. 2004. Skeleton based shape matching and retrieval. shape modeling international, 130--139.
[419]
Sung, M., Kim, V. G., Angst, R., and Guibas, L. 2015. Data-driven structural priors for shape completion. ACM Trans. Graph.
[420]
Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S. J., and Hoppe, H. 2005. Fast exact and approximate geodesics on meshes. In ACM SIGGRAPH 2005 Papers, ACM, New York, NY, USA, SIGGRAPH '05, 553--560.
[421]
Sutton, C., and Mccallum, A. 2005. Piecewise training of undirected models. In Proc. of UAI.
[422]
Swadzba, A., and Wachsmuth, S. 2010. Indoor scene classification using combined 3D and gist features. In Proc. ACCV, 201--215.
[423]
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. 2015. Going deeper with convolutions. In Proc. CVPR.
[424]
Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., and Rother, C. 2008. A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell. 30, 6, 1068--1080.
[425]
Talton, J. O., Gibson, D., Yang, L., Hanrahan, P., and Koltun, V. 2009. Exploratory modeling with collaborative design spaces. ACM Trans. Graph. 28, 5.
[426]
Talton, J. O., Gibson, D., Yang, L., Hanrahan, P., and Koltun, V. 2009. Exploratory modeling with collaborative design spaces. ACM Trans. Graph. 28, 5, 167:1--167:10.
[427]
Talton, J. O., Lou, Y., Lesser, S., Duke, J., Měch, R., and Koltun, V. 2011. Metropolis procedural modeling. ACM Trans. Graph. 30, 11:1--11:14.
[428]
Talton, J., Yang, L., Kumar, R., Lim, M., Goodman, N., and Měch, R. 2012. Learning design patterns with bayesian grammar induction. 63--74.
[429]
Tangelder, J. W. H., and Veltkamp, R. C. 2008. A survey of content based 3d shape retrieval methods. Multimedia Tools and Applications 39, 3, 441--471.
[430]
Tangelder, J. W., and Veltkamp, R. C. 2008. A survey of content based 3d shape retrieval methods. Multimedia Tools and Applications 39, 3, 441--471.
[431]
Thompson, D. W. 1945. On Growth and Form. Cambridge University Press.
[432]
Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. In Proc. Symp. on Geom. Proc., SGP '06, 201--210.
[433]
Torralba, A., Murphy, K. P., and Freeman, W. T. 2004. Sharing features: efficient boosting procedures for multiclass object detection. In Proceedings of the 2004 IEEE computer society conference on Computer vision and pattern recognition, IEEE Computer Society, Washington, DC, USA, CVPR'04, 762--769.
[434]
Torralba, A., Murphy, K. P., and Freeman, W. T. 2004. Sharing features: efficient boosting procedures for multiclass object detection. CVPR'04, 762--769.
[435]
Torralba, A., Murphy, K. P., and Freeman, W. T. 2007. Sharing Visual Features for Multiclass and Multiview Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 29, 5.
[436]
Torralba, A., Fergus, R., and Freeman, W. T. 2008. 80 million tiny images: a large database for non-parametric object and scene recognition. IEEE Trans. Pat. Ana. & Mach. Int. 30, 11, 1958--1970.
[437]
Trimble, 2014. Trimble 3D warehouse. http://sketchup.google.com/3Dwarehouse/.
[438]
Tropp, J. A. 2012. User-friendly tail bounds for sums of random matrices. Found. Comput. Math. 12, 4, 389--434.
[439]
Tsang, S., Balakrishnan, R., Singh, K., and Ranjan, A. 2004. A suggestive interface for image guided 3d sketching. In CHI, 591--598.
[440]
Tsoli, A., Mahmood, N., and Black, M. J. 2014. Breathing life into shape: Capturing, modeling and animating 3d human breathing. ACM Trans. Graph. 33, 4, 52:1--52:11.
[441]
Tsoumakas, G., and Katakis, I. 2007. Multi-label classification: An overview. Int J Data Ware. and Mining 2007, 1--13.
[442]
Tuytelaars, T., Turina, A., and Van Gool, L. 2003. Non-combinatorial detection of regular repetitions under perspective skew. IEEE Trans. Pattern Anal. Mach. Intell. 25, 418--432.
[443]
Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM Trans. Graph. 31, 4.
[444]
Valiant, L. G. 1984. A theory of the learnable. Commun. ACM 27, 11.
[445]
van Kaick, O., Tagliasacchi, A., Sidi, O., Zhang, H., Cohen-Or, D., Wolf, L., and Hamarneh, G. 2011. Prior knowledge for part correspondence. Computer Graphics Forum 30, 2, 553--562.
[446]
van Kaick, O., Tagliasacchi, A., Sidi, O., Zhang, H., Cohen-Or, D., Wolf, L., and Hamarneh, G. 2011. Prior knowledge for shape correspondence. Computer Graphics Forum 30, 2, 553--562.
[447]
van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D. 2011. A survey on shape correspondence. Comput. Graph. Forum 30, 6, 1681--1707.
[448]
van Kaick, O., Xu, K., Zhang, H., Wang, Y., Sun, S., Shamir, A., and Cohen-Or, D. 2013. Co-hierarchical analysis of shape structures. ACM Trans. Graph. 32, 4, 69:1--10.
[449]
Vicente, S., Kolmogorov, V., and Rother, C. 2010. Cosegmentation revisited: models and optimization. In Proceedings of the 11th European conference on Computer vision: Part II, Springer-Verlag, Berlin, Heidelberg, ECCV'10, 465--479.
[450]
Wainwright, M. J., Jaakkola, T., and Willsky, A. S. 2005. MAP estimation via agreement on trees: message-passing and linear programming. IEEE Transactions on Information Theory 51, 11, 3697--3717.
[451]
Wand, M., Jenke, P., Huang, Q., Bokeloh, M., Guibas, L., and Schilling, A. 2007. Reconstruction of deforming geometry from time-varying point clouds. In Proc. Symp. on Geom. Proc., 49--58.
[452]
Wand, M., Adams, B., Ovsjanikov, M., Berner, A., Bokeloh, M., Jenke, P., Guibas, L., Seidel, H.-P., and Schilling, A. 2009. Efficient reconstruction of nonrigid shape and motion from real-time 3d scanner data. ACM Trans. Graph. 28, 2, 15:1--15:15.
[453]
Wang, R. Y., and Popović, J. 2009. Real-time hand-tracking with a color glove. ACM Trans. Graph., 63:1--63:8.
[454]
Wang, L., and Singer, A. 2013. Exact and stable recovery of rotations for robust synchronization. Information and Inference 2, 2, 145--193.
[455]
Wang, H., Wexler, Y., Ofek, E., and Hoppe, H. 2008. Factoring repeated content within and among images. In ACM Trans. Graph., 14:1--14:10.
[456]
Wang, Y., Asafi, S., van Kaick, O., Zhang, H., Cohen-Or, D., and Chen, B. 2012. Active co-analysis of a set of shapes. ACM Trans. Graph. 31, 6, 165:1--165:10.
[457]
Wang, F., Huang, Q., and Guibas, L. 2013. Image co-segmentation via consistent functional maps. In Proc. ICCV.
[458]
Wang, Y., Gong, M., Wang, T., Cohen-Or, D., Zhang, H., and Chen, B. 2013. Projective analysis for 3d shape segmentation. ACM Trans. Graph. 32, 6, 192:1--192:12.
[459]
Wang, F., Huang, Q., Ovsjanikov, M., and Guibas, L. 2014. Unsupervised multi-class joint image segmentation. In Proc. CVPR.
[460]
Wang, F., Huang, Q., Ovsjanikov, M., and Guibas, L. 2014. Unsupervised multi-class joint image segmentation. In Proc. CVPR.
[461]
Watanabe, K., and Belyaev, A. G. 2001. Detection of salient curvature features on polygonal surfaces. Comput. Graph. Forum (Proc. Eurographics) 20, 3.
[462]
Wei, L.-Y., Lefebvre, S., Kwatra, V., and Turk, G. 2009. State of the art in example-based texture synthesis. In Eurographics State of the Art Report, 93--117.
[463]
Wei, L., Huang, Q., Ceylan, D., Vouga, E., and Li, H. 2016. Dense human body correspondence using convolutional network. CVPR.
[464]
Weinberger, K. Q., and Saul, L. K. 2009. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207--244.
[465]
Weise, T., Li, H., Van Gool, L., and Pauly, M. 2009. Face/off: Live facial puppetry. In Proc. of Symp. on Comp. Anim., 7--16.
[466]
Weise, T., Bouaziz, S., Li, H., and Pauly, M. 2011. Realtime performance-based facial animation. ACM Trans. Graph. 30, 4, 77:1--77:10.
[467]
Wen, Z., Goldfarb, D., and Yin, W. 2010. Alternating direction augmented Lagrangian methods for semidefinite programming. Math. Prog. Comput. 2, 3-4, 203--230.
[468]
Werner, T. 2007. A linear programming approach to max-sum problem: A review. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1165--1179.
[469]
Wessel, R., Blümel, I., and Klein, R. 2009. A 3d shape benchmark for retrieval and automatic classification of architectural data. In Eurographics 2009 Workshop on 3D Object Retrieval, 53--56.
[470]
Wiley, D. F., Amenta, N., Alcantara, D. A., Ghosh, D., Kil, Y. J., Delson, E., Harcourt-Smith, W., Rohlf, F. J., John, K. S., and Hamann, B. 2005. Evolutionary morphing. In Proceedings of IEEE Visualization 2005.
[471]
Winn, J., and Jojic, N. 2005. Locus: Learning object classes with unsupervised segmentation. In Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1 - Volume 01, IEEE Computer Society, Washington, DC, USA, 756--763.
[472]
Wonka, P., Wimmer, M., Sillion, F., and Ribarsky, W. 2003. Instant architecture. In ACM SIGGRAPH 2003 Papers, ACM, New York, NY, USA, SIGGRAPH '03, 669--677.
[473]
Wu, J., and Kobbelt, L. 2005. Structure recovery via hybrid variational surface approximation. Comput. Graph. Forum 24, 3, 277--284.
[474]
Wu, T.-P., Tang, C.-K., Brown, M. S., and Shum, H.-Y. 2007. Shapepalettes: Interactive normal transfer via sketching. ACM Trans. Graph. 26, 3.
[475]
Wu, T.-P., Sun, J., Tang, C.-K., and Shum, H.-Y. 2008. Interactive normal reconstruction from a single image. In ACM SIGGRAPH Asia 2008 Papers, SIGGRAPH Asia '08, 119:1--119:9.
[476]
Wu, H., Wang, Y.-S., Feng, K.-C., Wong, T.-T., Lee, T.-Y., and Heng, P.-A. 2010. Resizing by symmetry-summarization. In ACM SIGGRAPH Asia 2010 papers, ACM, New York, NY, USA, SIGGRAPH ASIA '10, 159:1--159:10.
[477]
Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J. 2015. 3d shapenets: A deep representation for volumetric shapes. In Proc. CVPR.
[478]
Xiang, Y., Mottaghi, R., and Savarese, S. 2014. Beyond pascal: A benchmark for 3d object detection in the wild. In IEEE Winter Conference on Applications of Computer Vision (WACV).
[479]
Xiang, Y., Song, C., Mottaghi, R., and Savarese, S. 2014. Monocular multiview object tracking with 3d aspect parts. In European Conference on Computer Vision (ECCV).
[480]
Xie, X., Xu, K., Mitra, N. J., Cohen-Or, D., Gong, W., Su, Q., and Chen, B. 2013. Sketch-to-design: Context-based part assembly. Comp. Graph. Forum 32, 8, 233--245.
[481]
Xie, Z., Xu, K., Liu, L., and Xiong, Y. 2014. 3d shape segmentation and labeling via extreme learning machine. Computer Graphics Forum 33, 5.
[482]
Xie, Z., Xu, K., Shan, W., Liu, L., Xiong, Y., and Huang, H. 2015. Projective feature learning for 3d shapes with multiview depth images. to appear.
[483]
Xin, S.-Q., and Wang, G.-J. 2009. Improving chen and han's algorithm on the discrete geodesic problem. ACM Trans. Graph. 28, 104:1--104:8.
[484]
Xu, K., Zhang, H., Tagliasacchi, A., Liu, L., Li, G., Meng, M., and Xiong, Y. 2009. Partial intrinsic reflectional symmetry of 3d shapes. In ACM SIGGRAPH Asia 2009 papers, ACM, New York, NY, USA, SIGGRAPH Asia '09, 138:1--138:10.
[485]
Xu, W., Wang, J., Yin, K., Zhou, K., van de Panne, M., Chen, F., and Guo, B. 2009. Joint-aware manipulation of deformable models. In ACM SIGGRAPH 2009 papers, ACM, New York, NY, USA, SIGGRAPH '09, 35:1--35:9.
[486]
Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., and Cheng, Z.-Q. 2010. Style-content separation by anisotropic part scales. ACM Trans. Graph. 29, 5, 184:1--184:10.
[487]
Xu, K., Zheng, H., Zhang, H., Cohen-Or, D., Liu, L., and Xiong, Y. 2011. Photo-inspired model-driven 3d object modeling. ACM Trans. Graph. 30, 4, 80:1--80:10.
[488]
Xu, K., Zhang, H., Cohen-Or, D., and Chen, B. 2012. Fit and diverse: Set evolution for inspiring 3d shape galleries. ACM Trans. Graph. 31, 4, 57:1--57:10.
[489]
Xu, K., Chen, K., Fu, H., Sun, W.-L., and Hu, S.-M. 2013. Sketch2scene: Sketch-based co-retrieval and co-placement of 3d models. ACM Trans. Graph. 32, 4, 123:1--12.
[490]
Xu, K., Chen, K., Fu, H., Sun, W.-L., and Hu, S.-M. 2013. Sketch2scene: Sketch-based co-retrieval and co-placement of 3d models. ACM Trans. Graph. 32, 4, 123:1--123:12.
[491]
Xu, K., Ma, R., Zhang, H., Zhu, C., Shamir, A., Cohen-Or, D., and Huang, H. 2014. Organizing heterogeneous scene collections through contextual focal points. ACM Trans. Graph. 33, 4, 35:1--12.
[492]
Xu, W., Shi, Z., Xu, M., Zhou, K., Wang, J., Zhou, B., Wang, J., and Yuan, Z. 2014. Transductive 3d shape segmentation using sparse reconstruction. Comp. Graph. F. 33, 5.
[493]
Xu, K., Huang, H., Shi, Y., Li, H., Long, P., Caichen, J., Sun, W., and Chen, B. 2015. Autoscanning for coupled scene reconstruction and proactive object analysis. ACM Trans. Graph. 34, 6, 177:1--177:14.
[494]
Xu, K., Kim, V., Q. Huang, N. M., and Kalogerakis, E., 2016. Wikipage: Data-driven shape analysis and processing. http://wp.cs.umass.edu/datadrivenshape/.
[495]
Yan, D.-M., Liu, Y., and Wang, W. 2006. Quadric surface extraction by variational shape approximation. In Proc. GMP, vol. 4077, 73--86.
[496]
Yang, L., and Jin, R. 2006. Distance metric learning: A comprehensive survey.
[497]
Yao, B., Khosla, A., and Fei-Fei, L. 2011. Combining randomization and discrimination for fine-grained image categorization. In Proc. CVPR, 1577--1584.
[498]
Yao, B., Khosla, A., and Fei-Fei, L. 2011. Combining randomization and discrimination for fine-grained image categorization. In Proc. CVPR.
[499]
Ye, Y. 1991. An o(n<sup>3</sup>l) potential reduction algorithm for linear programming. Math. Program. 50, 239--258.
[500]
Yi, L., Kim, V. G., Ceylan, D., Shen, I.-C., Yan, M., Su, H., Lu, C., Huang, Q., Sheffer, A., and Guibas, L. 2016. A scalable active framework for region annotation in 3d shape collections. SIGGRAPH Asia.
[501]
Yu, K., and Ng, A. 2010. Feature learning for image classification. In ECCV tutorials.
[502]
Yuan, M., and Lin, Y. 2006. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B 68, 49--67.
[503]
Yuan, M., and Lin, Y. 2006. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B 68, 49--67.
[504]
Yumer, M. E., and Kara, L. B. 2012. Co-abstraction of shape collections. ACM Trans. Graph. 31, 6, 166:1--166:11.
[505]
Yumer, M. E., and Kara, L. B. 2012. Co-abstraction of shape collections. ACM Trans. Graph. 31.
[506]
Yumer, M., and Kara, L. 2014. Co-constrained handles for deformation in shape collections. ACM Trans. Graph. 32, 6, to appear.
[507]
Yumer, M. E., and Mitra, N. J. 2016. Learning semantic deformation flows with 3d convolutional networks. In European Conference on Computer Vision (ECCV 2016), Springer, --.
[508]
Yumer, M. E., Chun, W., and Makadia, A. 2014. Co-segmentation of textured 3d shapes with sparse annotations. In Proc. CVPR.
[509]
Yumer, M. E., Chaudhuri, S., Hodgins, J. K., and Kara, L. B. 2015. Semantic shape editing using deformation handles. ACM Trans. Graph. 34.
[510]
Zach, C., Klopschitz, M., and Pollefeys, M. 2010. Disambiguating visual relations using loop constraints. In Proc. CVPR.
[511]
Zaharescu, A., Boyer, E., Varanasi, K., and Horaud, R. 2009. Surface feature detection and description with applications to mesh matching. In Proc. CVPR {DBL 2009}, 373--380.
[512]
Zeiler, M. D., and Fergus, R. 2014. Visualizing and understanding convolutional neural networks. In Proc. ECCV.
[513]
Zha, Z.-J., Mei, T., Wang, J., Wang, Z., and Hua, X.-S. 2009. Graph-based semi-supervised learning with multiple labels. J. Vis. Comun. Image Represent. 20, 2, 97--103.
[514]
Zhang, R., Tsai, P.-S., Cryer, J. E., and Shah, M. 1999. Shape from shading: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 21, 8, 690--706.
[515]
Zhang, E., Mischaikow, K., and Turk, G. 2005. Feature-based Surface Parameterization and Texture Mapping. ACM Trans. Graph. 24, 1.
[516]
Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., van Kaick, O., and Tagliasacchi, A. 2008. Deformation-driven shape correspondence. Comput. Graph. Forum 27, 5, 1431--1439.
[517]
Zhang, Y., Xu, W., Tong, Y., and Zhou, K. 2014. Online structure analysis for real-time indoor scene reconstruction. ACM Trans. Graph.
[518]
Zhao, X., Wang, H., and Komura, T. 2014. Indexing 3d scenes using the interaction bisector surface. ACM Trans. Graph. 33, 3, 22:1--22:15.
[519]
Zhou, K., Huang, X., Wang, X., Tong, Y., Desbrun, M., Guo, B., and Shum, H.-Y. 2006. Mesh quilting for geometric texture synthesis. In ACM SIGGRAPH 2006 Papers, ACM, New York, NY, USA, SIGGRAPH '06, 690--697.
[520]
Zhou, S., Fu, H., Liu, L., Cohen-Or, D., and Han, X. 2010. Parametric reshaping of human bodies in images. ACM Trans. Graph. 29, 4, 126:1--126:10.
[521]
Zhu, L., Zhou, Z., and Hu, D. 2008. Globally consistent reconstruction of ripped-up documents. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1, 1--13.
[522]
Zhu, X. 2006. Semi-supervised learning literature survey. Computer Sciences TR 1530, University of Wisconsin Madison.
[523]
Zia, M. Z., Stark, M., Schiele, B., and Schindler, K. 2013. Detailed 3d representations for object recognition and modeling. IEEE Trans. Pat. Ana. & Mach. Int. 35, 11, 2608--2623.

Cited By

View all
  • (2025)Fast Aerodynamic Performance Prediction for Airfoils across Multiple Reynolds Numbers Using Deep Learning MethodJournal of Aerospace Engineering10.1061/JAEEEZ.ASENG-533338:1Online publication date: Jan-2025
  • (2024)A Comprehensive Model of Automated Evaluation of Difficulty in Platformer GamesGames: Research and Practice10.1145/37050133:1(1-28)Online publication date: 16-Dec-2024
  • (2023)Explain What You See: Open-Ended Segmentation and Recognition of Occluded 3D Objects2023 IEEE International Conference on Robotics and Automation (ICRA)10.1109/ICRA48891.2023.10160927(4960-4966)Online publication date: 29-May-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SA '16: SIGGRAPH ASIA 2016 Courses
November 2016
1732 pages
ISBN:9781450345385
DOI:10.1145/2988458
  • Conference Chair:
  • Niloy J. Mitra
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 November 2016

Check for updates

Author Tags

  1. geometry analysis
  2. geometry processing
  3. machine learning

Qualifiers

  • Course

Conference

SA '16
Sponsor:
SA '16: SIGGRAPH Asia 2016
December 5 - 8, 2016
Macau

Acceptance Rates

Overall Acceptance Rate 178 of 869 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)59
  • Downloads (Last 6 weeks)6
Reflects downloads up to 02 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Fast Aerodynamic Performance Prediction for Airfoils across Multiple Reynolds Numbers Using Deep Learning MethodJournal of Aerospace Engineering10.1061/JAEEEZ.ASENG-533338:1Online publication date: Jan-2025
  • (2024)A Comprehensive Model of Automated Evaluation of Difficulty in Platformer GamesGames: Research and Practice10.1145/37050133:1(1-28)Online publication date: 16-Dec-2024
  • (2023)Explain What You See: Open-Ended Segmentation and Recognition of Occluded 3D Objects2023 IEEE International Conference on Robotics and Automation (ICRA)10.1109/ICRA48891.2023.10160927(4960-4966)Online publication date: 29-May-2023
  • (2023)Constraint-Based Parameterization and Disentanglement of Aerodynamic Shapes Using Deep Generative ModelsMachine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track10.1007/978-3-031-43427-3_22(360-376)Online publication date: 17-Sep-2023
  • (2022)DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape GenerationACM Transactions on Graphics10.1145/352621242:1(1-17)Online publication date: 12-Aug-2022
  • (2022)Blending Surface Segmentation and Editing for 3D ModelsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2020.304545028:8(2879-2894)Online publication date: 1-Aug-2022
  • (2022)Hybrid Artificial Immune System for Controlled Procedural Modeling2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA)10.1109/ICPECA53709.2022.9719153(1197-1206)Online publication date: 21-Jan-2022
  • (2022)High-quality indoor scene 3D reconstruction with RGB-D cameras: A brief reviewComputational Visual Media10.1007/s41095-021-0250-88:3(369-393)Online publication date: 6-Mar-2022
  • (2021)LaSeSOM: A Latent and Semantic Representation Framework for Soft Object ManipulationIEEE Robotics and Automation Letters10.1109/LRA.2021.30748726:3(5381-5388)Online publication date: Jul-2021
  • (2021)ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators2021 IEEE/CVF International Conference on Computer Vision (ICCV)10.1109/ICCV48922.2021.00576(5795-5805)Online publication date: Oct-2021
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media