skip to main content
10.1145/2993369.2993386acmconferencesArticle/Chapter ViewAbstractPublication PagesvrstConference Proceedingsconference-collections
research-article

A platform for bimanual virtual assembly training with haptic feedback in large multi-object environments

Authors Info & Claims
Published:02 November 2016Publication History

ABSTRACT

We present a virtual reality platform which addresses and integrates some of the currently challenging research topics in the field of virtual assembly: realistic and practical scenarios with several complex geometries, bimanual six-DoF haptic interaction for hands and arms, and intuitive navigation in large workspaces. We put an especial focus on our collision computation framework, which is able to display stiff and stable forces in 1 kHz using a combination of penalty- and constraint-based haptic rendering methods. Interaction with multiple arbitrary geometries is supported in realtime simulations, as well as several interfaces, allowing for collaborative training experiences. Performance results for an exemplary car assembly sequence which show the readiness of the system are provided.

Skip Supplemental Material Section

Supplemental Material

p153-sagardia.mp4

References

  1. Al-Ahmari, A. M., Abidi, M. H., Ahmad, A., and Darmoul, S. 2016. Development of a virtual manufacturing assembly simulation system. Advances in Mechanical Engineering 8, 3.Google ScholarGoogle ScholarCross RefCross Ref
  2. Barbič, J., and James, D. L. 2008. Six-dof haptic rendering of contact between geometrically complex reduced deformable models. IEEE Trans. on Haptics 1, 1, 39--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bowman, D. A., and Hodges, L. F. 1999. Formalizing the design, evaluation, and application of interaction techniques for immersive virtual environments. J. of Visual Languages & Computing 10, 1, 37--53.Google ScholarGoogle ScholarCross RefCross Ref
  4. Cohen, J. D., Lin, M. C., Manocha, D., and Ponamgi, M. 1995. I-collide: An interactive and exact collision detection system for large-scale environments. In Proc. of ACM Interactive 3D Graphics Conference, ACM, 189--ff. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Colgate, J. E., Stanley, M. C., and Brown, J. M. 1995. Issues in the haptic display of tool use. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), vol. 3, 140--145.Google ScholarGoogle Scholar
  6. Conti, F., and Khatib, O. 2005. Spanning large workspaces using small haptic devices. In Proc. IEEE World Haptics Conference, IEEE, 183--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dominjon, L., Anatole, L., Burkhardt, J.-M., and Simon, R. 2006. A Comparison of Three Techniques to Interact in Large Virtual Environments Using Haptic Devices with Limited Workspace. J. of Material Forming 4035, 288--299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Garbaya, S., and Zaldivar-Colado, U. 2007. The affect of contact force sensations on user performance in virtual assembly tasks. Virtual Reality 11, 4, 287--299.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gomes de Sá, A., and Zachmann, G. 1999. Virtual reality as a tool for verification of assembly and maintenance processes. Computers and Graphics 23, 3, 389--403.Google ScholarGoogle ScholarCross RefCross Ref
  10. Gonzalez-Badillo, G., Medellin-Castillo, H., Lim, T., Ritchie, J., and Garbaya, S. 2014. The development of a physics and constraint-based haptic virtual assembly system. Assembly Automation 34, 1, 41--55.Google ScholarGoogle ScholarCross RefCross Ref
  11. Gutiérrez, T., Rodríguez, J., Velaz, Y., Casado, S., Suescun, A., and Sánchez, E. J. 2010. Ima-vr: a multimodal virtual training system for skills transfer in industrial maintenance and assembly tasks. In Proc. IEEE Int. Symp. on Robots and Human Interactive Communications (ROMAN), IEEE, 428--433.Google ScholarGoogle Scholar
  12. Howard, B. M., and Vance, J. M. 2007. Desktop haptic virtual assembly using physically based modelling. Virtual Reality 11, 4, 207--215.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hulin, T., Hertkorn, K., Kremer, P., Schätzle, S., Artigas, J., Sagardia, M., Zacharias, F., and Preusche, C. 2011. The dlr bimanual haptic device with optimized workspace (video). In Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), IEEE, 3441--3442.Google ScholarGoogle Scholar
  14. Iglesias, R., Casado, S., Gutierrez, T., Garcia-Alonso, A., Yap, K. M., Yu, W., and Marshall, A. 2006. A peer-to-peer architecture for collaborative haptic assembly. In Proc. IEEE Int. Symp. on Distributed Simulation and Real-Time Applications, IEEE, 25--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. LaViola Jr, J. J. 2000. A discussion of cybersickness in virtual environments. ACM SIGCHI Bulletin 32, 1, 47--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lim, T., Ritchie, J. M., Dewar, R. G., Corney, J. R., Wilkinson, P., Calis, M., Desmulliez, M., and Fang, J.-J. 2007. Factors affecting user performance in haptic assembly. Virtual Reality 11, 4, 241--252.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Liu, K., Yin, X., Fan, X., and He, Q. 2015. Virtual assembly with physical information: a review. Assembly Automation 35, 3, 206--220.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. McNeely, W. A., Puterbaugh, K. D., and Troy, J. J. 1999. Six degree-of-freedom haptic rendering using voxel sampling. In Proc. ACM SIGGRAPH, ACM, 401--408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. McNeely, W. A., Puterbaugh, K. D., and Troy, J. J. 2006. Voxel-based 6-dof haptic rendering improvements. Haptics-e: The Electronic Journal of Haptics Research 3, 7, 1--12.Google ScholarGoogle Scholar
  20. Mirtich, B., and Canny, J. 1994. Impulse-based dynamic simulation. Tech. rep., University of California at Berkeley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ortega, M., Redon, S., and Coquillart, S. 2007. A six degree-of-freedom god-object method for haptic display of rigid bodies with surface properties. IEEE Trans. on Visualization and Computer Graphics 13, 3, 458--469. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Pavlik, R. A., and Vance, J. M. 2011. Expanding haptic workspace for coupled-object manipulation. In Proc. World Conf. on Innovative Virtual Reality (ASME), American Society of Mechanical Engineers (ASME), 293--299.Google ScholarGoogle Scholar
  23. Sagardia, M., and Hulin, T. 2016. A fast and robust six-dof god object heuristic for haptic rendering of complex models with friction. In Proc. ACM Symp. on Virtual Reality and Software Techonology (VRST), ACM. (Accepted and pending for publication). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Sagardia, M., Weber, B., Hulin, T., Preusche, C., and Hirzinger, G. 2012. Evaluation of visual and force feedback in virtual assembly verifications. In Proc. IEEE Virtual Reality (VR), IEEE, 23--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sagardia, M., Stouraitis, T., and e Silva, J. L. 2014. A New Fast and Robust Collision Detection and Force Computation Algorithm Applied to the Physics Engine Bullet: Method, Integration, and Evaluation. In EuroVR: Conf. and Exhibition of the European Association of Virtual and Augmented Reality, Eurographics Association, 65--76.Google ScholarGoogle Scholar
  26. Sagardia, M., Hertkorn, K., Hulin, T., Schatzle, S., Wolff, R., Hummel, J., Dodiya, J., and Gerndt, A. 2015. VR-OOS: The DLR's virtual reality simulator for telerobotic on-orbit servicing with haptic feedback. In Proc. IEEE Aerospace Conf., 1--17.Google ScholarGoogle Scholar
  27. Salisbury, K., and Tarr, C. 1997. Haptic rendering of surfaces defined by implicit functions. In Proc. Annual ASME Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, vol. 61, 61--67.Google ScholarGoogle Scholar
  28. Salisbury, K., Conti, F., and Barbagli, F. 2004. Haptic rendering: Introductory concepts. IEEE Computer Graphics and Applications 24, 2, 24--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Schätzle, S., Ende, T., Wuesthoff, T., and Preusche, C. 2010. VibroTac: an ergonomic and versatile usable vibrotactile feedback device. In Proc. IEEE Int. Symp. on Robots and Human Interactive Communications (ROMAN), 705--710.Google ScholarGoogle Scholar
  30. Seth, A., Su, H.-J., and Vance, J. M. 2006. Sharp: a system for haptic assembly and realistic prototyping. In Proc. ASME Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf., American Society of Mechanical Engineers (ASME), 905--912.Google ScholarGoogle Scholar
  31. Seth, A., Vance, J. M., and Oliver, J. H. 2011. Virtual reality for assembly methods prototyping: a review. Virtual Reality 15, 1, 5--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Srinivasan, M. A., and Basdogan, C. 1997. Haptics in virtual environments: Taxonomy, research status, and challenges. Computers & Graphics 21, 4, 393--404.Google ScholarGoogle Scholar
  33. Sung, R. C., Corney, J. R., and Clark, D. E. 2001. Automatic assembly feature recognition and disassembly sequence generation. Journal of Computing and Information Science in Engineering 1, 4, 291--299.Google ScholarGoogle ScholarCross RefCross Ref
  34. Talvas, A., Marchal, M., and Lecuyer, A. 2014. A survey on bimanual haptic interaction. IEEE Trans. on Haptics 7, 3, 285--300.Google ScholarGoogle ScholarCross RefCross Ref
  35. Tan, H. Z., Srinivasan, M. A., Eberman, B., and Cheng, B. 1994. Human factors for the design of force-reflecting haptic interfaces. Dynamic Systems and Control 55, 1, 353--359.Google ScholarGoogle Scholar
  36. Tching, L., Dumont, G., and Perret, J. 2010. Interactive simulation of cad models assemblies using virtual constraint guidance. Int. J. on Interactive Design and Manufacturing (IJIDeM) 4, 2, 95--102.Google ScholarGoogle ScholarCross RefCross Ref
  37. Wan, H., Gao, S., Peng, Q., Dai, G., and Zhang, F. 2004. Mivas: a multi-modal immersive virtual assembly system. In Proc. Int. Design Engineering Technical Conf. (ASME), American Society of Mechanical Engineers (ASME), 113--122.Google ScholarGoogle Scholar
  38. Xia, P., Lopes, A., and Restivo, M. 2011. Design and implementation of a haptic-based virtual assembly system. Assembly Automation 31, 4, 369--384.Google ScholarGoogle ScholarCross RefCross Ref
  39. Zacharias, F., Howard, I. S., Hulin, T., and Hirzinger, G. 2010. Workspace comparisons of setup configurations for human-robot interaction. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), IEEE, 3117--3122.Google ScholarGoogle Scholar
  40. Zachmann, G., and Rettig, A. 2001. Natural and robust interaction in virtual assembly simulation. In Proc. Int. Conf. on Concurrent Engineering: Research and Applications (ISPE), vol. 1, 425--434.Google ScholarGoogle Scholar
  41. Zorriassatine, F., Wykes, C., Parkin, R., and Gindy, N. 2003. A survey of virtual prototyping techniques for mechanical product development. Proc. of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 217, 4, 513--530.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A platform for bimanual virtual assembly training with haptic feedback in large multi-object environments

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          VRST '16: Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology
          November 2016
          363 pages
          ISBN:9781450344913
          DOI:10.1145/2993369

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 November 2016

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate66of254submissions,26%

          Upcoming Conference

          VRST '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader