skip to main content
10.1145/2994258.2994260acmconferencesArticle/Chapter ViewAbstractPublication PagesmigConference Proceedingsconference-collections
research-article

Simulating visual geometry

Published:10 October 2016Publication History

ABSTRACT

In computer graphics, simulated objects typically have two or three different representations, a visual mesh, a simulation mesh and a collection of convex shapes for collision handling. Using multiple representations requires skilled authoring and complicates object handing at run time. It can also produce visual artifacts such as a mismatch of collision behavior and visual appearance. The reason for using multiple representation has been performance restrictions in real time environments. However, for virtual worlds, we believe that the ultimate goal must be WYSIWYS -- what you see is what you simulate, what you can manipulate, what you can touch.

In this paper we present a new method that uses the same representation for simulation and collision handling and an almost identical visualization mesh. This representation is very close and directly derived from a visual input mesh which does not have to be prepared for simulation but can be non-manifold, non-conforming and self-intersecting.

Skip Supplemental Material Section

Supplemental Material

References

  1. Bouaziz S., Martin S., Liu T., Kavan L., Pauly M.: Projective dynamics: Fusing constraint projections for fast simulation. ACM Trans. Graph. 33, 4 (July 2014), 154:1--154:11. URL: http://doi.acm.org/10.1145/2601097.2601116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bender J., Müller M., Macklin M.: Position-based simulation methods in computer graphics. EUROGRAPHICS Tutorial Notes, Zürich, May 4--8 (2015).Google ScholarGoogle Scholar
  3. Choi M. G.: Real-time simulation of ductile fracture with oriented particles. Computer Animation and Virtual Worlds 25, 3--4. URL: http://dx.doi.org/10.1002/cav.1601. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Deul C., Charrier P., Bender J.: Position-based rigid body dynamics. In Computer Animation and Social Agents (CASA) (2014).Google ScholarGoogle Scholar
  5. Faure F., Gilles B., Bousquet G., Pai D. K.: Sparse mesh-less models of complex deformable solids. In ACM SIGGRAPH 2011 Papers (2011), SIGGRAPH '11, pp. 73:1--73:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Irving G., Teran J., Fedkiw R.: Invertible finite elements for robust simulation of large deformation. In Proceedings of the ACM SIGGRAPH Symposium on Computer Animation (2004), pp. 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Jones B., Martin A., Levine J. A., Shinar T., Bargteil A. W.: Ductile fracture for clustered shape matching.Google ScholarGoogle Scholar
  8. Müller M., Chentanez N.: Solid simulation with oriented particles. ACM Trans. Graph. 30, 4 (July 2011), 92:1--92:10. URL: http://doi.acm.org/10.1145/2010324.1964987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Müller M., Chentanez N., Kim T.-Y.: Real time dynamic fracture with volumetric approximate convex decompositions. ACM Trans. Graph. 32, 4 (July 2013), 115:1--115:10. URL: http://doi.acm.org/10.1145/2461912.2461934. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Müller M., Gross M. H.: Interactive virtual materials. In Graphics Interface 2004 (London, Ontario, Canada, 2004), pp. 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Müller M., Heidelberger B., Teschner M.: Meshless deformations based on shape matching. In Proc. SIGGRAPH 2005 (2005), pp. 471--478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Martin S., Kaufmann P., Botsch M., Grinspun E., Gross M.: Unified simulation of elastic rods, shells, and solids. ACM Trans. Graph. 29, 4 (July 2010), 39:1--39:10. URL: http://doi.acm.org/10.1145/1778765.1778776. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Müller M., Keiser R., Nealen A., Pauly M., Gross M., Alexa M.: Point Based Animation of Elastic, Plastic and Melting Objects. In Symposium on Computer Animation (2004), Boulic R., Pai D. K., (Eds.), The Eurographics Association. doi:10.2312/SCA/SCA04/141--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Macklin M., Müller M., Chentanez N., Kim T.-Y.: Unified particle physics for real-time applications. ACM Trans. Graph. 33, 4 (July 2014), 153:1--153:12. URL: http://doi.acm.org/10.1145/2601097.2601152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Müller M., Teschner M., Gross M.: Physically-based simulation of objects represented by surface meshes. In in Proceedings of Computer Graphics International (CGI) (2004), pp. 26--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Magnenat-Thalmann N., Laperriere R., Thalmann D.: Joint-dependent local deformations for hand animation and object grasping. In Proceedings on Graphics Interface 88 (Toronto, Ont., Canada, Canada). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. O'Brien J. F., Bargteil A. W., Hodgins J. K.: Graphical modeling and animation of ductile fracture. In Computer Graphics (SIGGRAPH 2002 Proceedings) (San Antonio, Texas, July 2002), pp. 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. O'Brien J. F., Hodgins J. K.: Graphical modeling and animation of brittle fracture. In Computer Graphics (SIGGRAPH '99 Proceedings) (New York, Aug. 1999), ACM Press, pp. 137--146. doi:http://doi.acm.org/10.1145/311535.311550. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Pai D. K., Levin D. I. W., Fan Y.: Eulerian solids for soft tissue and more. In ACM SIGGRAPH 2014 Courses (2014), SIGGRAPH '14, pp. 22:1--22:151. URL: http://doi.acm.org/10.1145/2614028.2615413. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ram D., Gast T., Jiang C., Schroeder C., Stomakhin A., Teran J., Kavehpour P.: A material point method for viscoelastic fluids, foams and sponges. In Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation (2015), SCA '15, pp. 157--163. URL: http://doi.acm.org/10.1145/2786784.2786798. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Rivers A. R., James D. L.: Fastlsm: Fast lattice shape matching for robust real-time deformation. In ACM Transactions on Graphics (Proc. SIGGRAPH 2007) (2007), vol. 26(3), pp. 82:1--82:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Selle A., Lentine M., Fedkiw R.: A mass spring model for hair simulation. ACM Trans. Graph. 27, 3 (Aug. 2008), 64:1--64:11. URL: http://doi.acm.org/10.1145/1360612.1360663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Sederberg T. W., Parry S. R.: Free-form deformation of solid geometric models. In Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques (1986), SIGGRAPH '86, pp. 151--160. URL: http://doi.acm.org/10.1145/15922.15903. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Stomakhin A., Schroeder C., Chai L., Teran J., Selle A.: A material point method for snow simulation. ACM Trans. Graph. 32, 4 (July 2013), 102:1--102:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Su J., Schroeder C., Fedkiw R.: Energy stability and fracture for frame rate rigid body simulations. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2009), SCA '09, pp. 155--164. URL: http://doi.acm.org/10.1145/1599470.1599491. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Stomakhin A., Schroeder C., Jiang C., Chai L., Teran J., Selle A.: Augmented mpm for phase-change and varied materials. ACM Trans. Graph. 33, 4 (July 2014), 138:1--138:11. URL: http://doi.acm.org/10.1145/2601097.2601176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Terzopoulos D., Fleischer K.: Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. In the Proceedings of ACM SIGGRAPH 88 (1988), pp. 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Simulating visual geometry

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      MIG '16: Proceedings of the 9th International Conference on Motion in Games
      October 2016
      202 pages
      ISBN:9781450345927
      DOI:10.1145/2994258

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 10 October 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate-9of-9submissions,100%

      Upcoming Conference

      MIG '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader