skip to main content
10.1145/2994551.2994562acmconferencesArticle/Chapter ViewAbstractPublication PagessensysConference Proceedingsconference-collections
research-article

A Lightweight and Inexpensive In-ear Sensing System For Automatic Whole-night Sleep Stage Monitoring

Authors Info & Claims
Published:14 November 2016Publication History

ABSTRACT

This paper introduces LIBS, a light-weight and inexpensive wearable sensing system, that can capture electrical activities of human brain, eyes, and facial muscles with two pairs of custom-built flexible electrodes each of which is embedded on an off-the-shelf foam earplug. A supervised non-negative matrix factorization algorithm to adaptively analyze and extract these bioelectrical signals from a single mixed in-ear channel collected by the sensor is also proposed. While LIBS can enable a wide class of low-cost self-care, human computer interaction, and health monitoring applications, we demonstrate its medical potential by developing an autonomous whole-night sleep staging system utilizing LIBS's outputs. We constructed a hardware prototype from off-the-shelf electronic components and used it to conduct 38 hours of sleep studies on 8 participants over a period of 30 days. Our evaluation results show that LIBS can monitor biosignals representing brain activities, eye movements, and muscle contractions with excellent fidelity such that it can be used for sleep stage classification with an average of more than 95% accuracy.

Skip Supplemental Material Section

Supplemental Material

p230.mov

mov

1.6 GB

References

  1. American Academy of Sleep Medicine. http://www.aasmnet.org/. Accessed: August 03, 2016.Google ScholarGoogle Scholar
  2. K. A. I. Aboalayon, W. S. Almuhammadi, and M. Faezipour. A comparison of different machine learning algorithms using single channel EEG signal for classifying human sleep stages. In Proceedings of 2015 IEEE Long Island Systems, Applications and Technology Conference (LISAT), pages 1--6, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  3. C. Alloway, R. Ogilvie, and C. Shapiro. The alpha attenuation test: assessing excessive daytime sleepiness in narcolepsy-cataplexy. Sleep, 20(4):258âĂŤ266, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  4. Aware. https://goo.gl/eh48HA. Accessed: August 03, 2016.Google ScholarGoogle Scholar
  5. Basis. http://www.mybasis.com/. Accessed: August 03, 2016.Google ScholarGoogle Scholar
  6. M. Bleichner, M. Lundbeck, M. Selisky, F. Minow, M. Jäger, R. Emkes, S. Debener, and M. D. Vos. Exploring miniaturized EEG electrodes for brain-computer interfaces. An EEG you do not see? Physiological Reports, 3(4), 2015.Google ScholarGoogle Scholar
  7. C. Damon, A. Liutkus, A. Gramfort, and S. Essid. Non-negative matrix factorization for single-channel EEG artifact rejection. In Proceedings of 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1177--1181, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  8. S. Essid. A single-class SVM based algorithm for computing an identifiable NMF. In Proceedings of 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2053--2056, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  9. J. Fell, J. Roschke, K. Mann, and C. Schaffner. Discrimination of sleep stages: a comparison between spectral and nonlinear EEG measures. Electroencephalography and Clinical Neurophysiology, 98(5):401--410, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  10. Fitbit. http://www.fitbit.com/. Accessed: August 03, 2016.Google ScholarGoogle Scholar
  11. V. Goverdovsky, D. Looney, P. Kidmose, and D. Mandic. In-ear EEG from viscoelastic generic earpieces: Robust and unobtrusive 24/7 monitoring. IEEE Sensors Journal, 2015.Google ScholarGoogle Scholar
  12. M. Grenness. Mapping Morphologic Change in the External Ear. In Masters dissertation. Hobart, Australia: University of Tasmania, 1999.Google ScholarGoogle Scholar
  13. W. Gu, Z. Yang, L. Shangguan, W. Sun, K. Jin, and Y. Liu. InEar BioFeedController: A Headset For Hands-Free And Eyes-Free Interaction With Mobile Devices. In CHI, pages 1293--1298, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Gudmundsson, T. Runarsson, and S. Sigurdsson. Automatic Sleep Staging Using Support Vector Machines with Posterior Probability Estimates. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC), pages 366--372, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. H. Hallez, B. Vanrumste, R. Grech, J. Muscat, W. Clercq, A. Vergult, Y. D'Asseler, K. Camilleri, S. Fabri, S. Huffel, and I. Lemahieu. Review on solving the forward problem in EEG source analysis. Journal of NeuroEngineering and Rehabilitation, 4(1):1--29, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  16. D. He, E. Winokur, and C. Sodini. An ear-worn continuous ballistocardiogram (BCG) sensor for cardiovascular monitoring. In Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 5030--5033, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  17. Jawbone. https://jawbone.com/. Accessed: August 03, 2016.Google ScholarGoogle Scholar
  18. KOKOON. https://kokoon.io/. Accessed: August 03, 2016.Google ScholarGoogle Scholar
  19. B. Koley and D. Dey. An Ensemble System for Automatic Sleep Stage Classification Using Single Channel EEG Signal. Comput. Biol. Med., 42(12):1186--1195, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Krakovska and K. Mezeiova. Automatic sleep scoring: A search for an optimal combination of measures. Artificial Intelligence in Medicine, 53(1):25--33, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. Kulkarni, P. Rao, S. Natarajan, A. Goldman, V. S. Sabbisetti, Y. Khater, N. Korimerla, V. Chandrasekar, R. A. Mashelkar, and S. Sengupta. Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface. In Proceedings of the National Academy of Sciences of the United States of America, 2015.Google ScholarGoogle Scholar
  22. C. Kushida et al. Practice parameters for the indications for polysomnography and related procedures: an update for 2005. Sleep, 28(4):499--521, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  23. J. H. Lee, S. M. Lee, H. J. Byeon, J. S. Hong, K. S. Park, and S. Lee. CNT/PDMS-based canal-typed ear electrodes for inconspicuous EEG recording. Journal of Neural Engineering, 11(4), 2014.Google ScholarGoogle Scholar
  24. S. Liang, C. Kuo, Y. Hu, and Y. Cheng. A rule-based automatic sleep staging method. Journal of Neuroscience Methods, 205(1):169--176, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  25. S. F. Liang, C. E. Kuo, Y. C. Lee, W. C. Lin, Y. C. Liu, P. Y. Chen, F. Y. Cherng, and F. Z. Shaw. Development of an EOG-Based Automatic Sleep-Monitoring Eye Mask. In IEEE Transactions on Instrumentation and Measurement, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  26. D. Looney, P. Kidmose, and D. Mandic. Ear-EEG: User-Centered and Wearable BCI, volume 6 of Biosystems & Biorobotics, pages 41--50. Springer Berlin Heidelberg, 2014.Google ScholarGoogle Scholar
  27. D. Looney, P. Kidmose, C. Park, M. Ungstrup, M. Rank, K. Rosenkranz, and D. Mandic. The In-the-Ear Recording Concept: User-Centered and Wearable Brain Monitoring. IEEE Pulse, 3(6):32--42, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  28. H. Manabe, M. Fukumoto, and T. Yagi. Conductive rubber electrodes for earphone-based eye gesture input interface. Journal of Personal and Ubiquitous Computing, 19(1):143--154, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. N. Merrill, M. T. Curran, J. Yang, and J. Chuang. Classifying Mental Gestures with In-Ear EEG. In Proceedings of 13th International Conference on Wearable and Implantable Body Sensor Network (BSN), 2016.Google ScholarGoogle ScholarCross RefCross Ref
  30. Misfit. http://misfit.com/. Accessed: August 03, 2016.Google ScholarGoogle Scholar
  31. S. Motamedi-Fakhr, M. Moshrefi-Torbati, M. Hill, C. Hill, and P. White. Signal processing techniques applied to human sleep EEG signals - A review. Biomedical Signal Processing and Control, 10:21--33, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  32. A. Nawrocka and K. Holewa. Brain - Computer interface based on Steady - State Visual Evoked Potentials (SSVEP). In Proceedings of 14th International Carpathian Control Conference (ICCC), pages 251--254, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  33. A. Nguyen, R. Alqurashi, A. C. Halbower, and T. Vu. mSleepWatcher: Why didnâĂŹt I sleep well? In Proceedings of ISSAT International Conference on Modeling of Complex Systems and Environments (MCSE), pages 96--103, 2015.Google ScholarGoogle Scholar
  34. A. Nguyen, R. Alqurashi, Z. Raghebi, F. Banaei-kashani, A. C. Halbower, T. Dinh, and T. Vu. In-ear Biosignal Recording System: A Wearable for Automatic Whole-night Sleep Staging. In Proceedings of the 2016 Workshop on Wearable Systems and Applications (ACM MobiSys-WearSys), pages 19--24, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. R. Oliveira. The dynamic ear canal. Ballachandra B, ed. The Human Ear Canal. San Diego: Singular Publishing Group, pages 83--111, 1995.Google ScholarGoogle Scholar
  36. R. Oliveira, B. Hammer, A. Stillman, J. Holm, C. Jons, and R. Margolis. A look at ear canal changes with jaw motion. Ear Hear, 13(6):464--466, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  37. R. Oliveira and G. Hoeker. Ear canal anatomy and activity. In Pirzanski C, ed. Ear Impressions and New Laser Shell Technology. Seminars in Hear, pages 265--275, 2003.Google ScholarGoogle Scholar
  38. R. Oliveira, V. Kolpe, and G. Hoeker. The dynamic human ear canal: Quantitative changes in canal volume with jaw articulation and its relevance to hearing aid use. In Poster presented at IHCON, 2002.Google ScholarGoogle Scholar
  39. OpenBCI. http://openbci.com/. Accessed: August 03, 2016.Google ScholarGoogle Scholar
  40. J. Owens. Insufficient Sleep in Adolescents and Young Adults: An Update on Causes and Consequences. Pediatrics, 134(3):921--932, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  41. M. Poh, K. Kim, A. Goessling, N. Swenson, and R. Picard. Heartphones: Sensor Earphones and Mobile Application for Non-obtrusive Health Monitoring. In Proceedings of International Symposium on Wearable Computers (ISWC), pages 153--154, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. M. Poh, K. Kim, A. Goessling, N. Swenson, and R. Picard. Cardiovascular Monitoring Using Earphones and a Mobile Device. In Proceedings of IEEE Pervasive Computing, pages 18--26, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. C. P. Pollak, W. W. Tryon, H. Nagaraja, and R. Dzwonczyk. How Accurately Does Wrist Actigraphy Identify the States of Sleep and Wakefulness? SLEEP, 24(8), 2001.Google ScholarGoogle Scholar
  44. Polysmith - NIHON KOHDEN. http://www.nihonkohden.de/. Accessed: August 03, 2016.Google ScholarGoogle Scholar
  45. Types of Sleep Studies. http://www.nhlbi.nih.gov/health/health-topics/topics/slpst/types. Accessed: August 03, 2016.Google ScholarGoogle Scholar
  46. A. Rechtscheffen and A. Kales. A manual of standardized terminology, techniques, and scoring system for sleep stages of human subjects. Washington: Public Health Service, US Government Printing Office, 1968.Google ScholarGoogle Scholar
  47. M. Ronzhina, O. Janousek, J. Kolarova, M. Novakova, P. Honzik, and I. Provaznik. Sleep scoring using artificial neural networks. Sleep Medicine Reviews, 16(3):251--263, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  48. A. Sano, T. Tomita, and H. Oba. Applications using Earphone with Biosignal Sensors. In Human Interface Society Meeting, volume 12, pages 1--6, 2010.Google ScholarGoogle Scholar
  49. B. Sen, M. Peker, A. Cavusoglu, and F. V. Celebi. A Comparative Study on Classification of Sleep Stage Based on EEG Signals Using Feature Selection and Classification Algorithms. Journal of Medical Systems, 38(3):1--21, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  50. Sleep Shepherd. http://sleepshepherd.com/. Accessed: August 03, 2016.Google ScholarGoogle Scholar
  51. D. Shrivastava, S. Jung, M. Saadat, R. Sirohi, and K. Crewson. How to interpret the results of a sleep study. Journal of Community Hospital Internal Medicine Perspectives, 4(5), 2014.Google ScholarGoogle ScholarCross RefCross Ref
  52. What Are Sleep Studies? http://www.nhlbi.nih.gov/health/health-topics/topics/slpst/. Accessed: August 03, 2016.Google ScholarGoogle Scholar
  53. Trackit Mark III - LifeLines Neurodiagnostic Systems. https://www.lifelinesneuro.com/. Accessed: August 03, 2016.Google ScholarGoogle Scholar
  54. R. A. U., O. Faust, N. Kannathal, T. Chua, and S. Laxminarayan. Non-linear analysis of EEG signals at various sleep stages. Computer Methods and Programs in Biomedicine, 80(1):37--45, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Brain Basics: Understanding Sleep. http://www.ninds.nih.gov/disorders/brain_basics/understanding_sleep.htm. Accessed: August 03, 2016.Google ScholarGoogle Scholar
  56. C. van der Reijden, L. Mens, and A. Snik. Signal-to-noise ratios of the auditory steady-state response from fifty-five EEG derivations in adults. Journal of the American Academy of Audiology, 15(10):692--701, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  57. T. Virtanen, J. F. Gemmeke, B. Raj, and P. Smaragdis. Compositional Models for Audio Processing: Uncovering the structure of sound mixtures. IEEE Signal Processing Magazine, 32(2):125--144, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  58. S. Vogel, M. Hulsbusch, T. Hennig, V. Blazek, and S. Leonhardt. In-Ear Vital Signs Monitoring Using a Novel Microoptic Reflective Sensor. IEEE Transactions on Information Technology in Biomedicine, 13(6):882--889, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. T. Vollmer, P. Schauerte, M. Zink, S. Glggler, J. Schiefer, M. Schiek, U. Johnen, and S. Leonhardt. Individualized biomonitoring in heart failure - Biomon-HF "Keep an eye on heart failure - especially at night". Biomedical Engineering (Berl), 59(2):103--111, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  60. P. D. Welch. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. on Audio Electroacoustics, AU-15(2):70--73, 1967.Google ScholarGoogle ScholarCross RefCross Ref
  61. E. Winokur, D. He, and C. Sodini. A wearable vital signs monitor at the ear for continuous heart rate and Pulse Transit Time measurements. In Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 2724--2727, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  62. L. Zoubek, S. Charbonnier, S. Lesecq, A. Buguet, and F. Chapotot. Feature selection for sleep/wake stages classification using data driven methods. Biomedical Signal Processing and Control, 2(3):171--179, 2007.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SenSys '16: Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM
    November 2016
    398 pages
    ISBN:9781450342636
    DOI:10.1145/2994551

    Copyright © 2016 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 14 November 2016

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate174of867submissions,20%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader