skip to main content
research-article

Subjective and Objective Visual Quality Assessment of Textured 3D Meshes

Authors Info & Claims
Published:22 October 2016Publication History
Skip Abstract Section

Abstract

Objective visual quality assessment of 3D models is a fundamental issue in computer graphics. Quality assessment metrics may allow a wide range of processes to be guided and evaluated, such as level of detail creation, compression, filtering, and so on. Most computer graphics assets are composed of geometric surfaces on which several texture images can be mapped to make the rendering more realistic. While some quality assessment metrics exist for geometric surfaces, almost no research has been conducted on the evaluation of texture-mapped 3D models. In this context, we present a new subjective study to evaluate the perceptual quality of textured meshes, based on a paired comparison protocol. We introduce both texture and geometry distortions on a set of 5 reference models to produce a database of 136 distorted models, evaluated using two rendering protocols. Based on analysis of the results, we propose two new metrics for visual quality assessment of textured mesh, as optimized linear combinations of accurate geometry and texture quality measurements. These proposed perceptual metrics outperform their counterparts in terms of correlation with human opinion. The database, along with the associated subjective scores, will be made publicly available online.

References

  1. Tunç Ozan Aydın, Martin Čadík, Karol Myszkowski, and Hans-Peter Seidel. 2010. Video quality assessment for computer graphics applications. ACM Transactions on Graphics 29, 6 (Dec 2010), 1. DOI:http://dx.doi.org/10.1145/1882261.1866187 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Martin Čadík, Robert Herzog, Rafal Mantiuk, Radosaw Mantiuk, Karol Myszkowski, and Hans-Peter Seidel. 2013. Learning to predict localized distortions in rendered images. In Pacific Graphics, Vol. 32.Google ScholarGoogle Scholar
  3. Martin Čadík, Robert Herzog, Rafal Mantiuk, Karol Myszkowski, and Hans-Peter Seidel. 2012. New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts. ACM Transactions on Graphics 31, 6 (2012), Article 147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. D. M. Chandler and S. S. Hemami. 2007. VSNR: A wavelet-based visual signal-to-noise ratio for natural images. IEEE Transactions on Image Processing 16, 9 (Sep 2007), 2284--2298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. I. Cheng and A. Basu. 2007. Perceptually optimized 3-D transmission over wireless networks. IEEE Transactions on Multimedia 9, 2 (Feb 2007), 386--396. DOI:http://dx.doi.org/10.1109/TMM.2006.886291 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Massimiliano Corsini, Elisa Drelie Gelasca, Touradj Ebrahimi, and Mauro Barni. 2007. Watermarked 3-D mesh quality assessment. IEEE Transactions on Multimedia 9, 2 (Feb 2007), 247--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Corsini, M. C. Larabi, G. Lavoué, O. Petrik, L. Váša, and K. Wang. 2013. Perceptual metrics for static and dynamic triangle meshes. Computer Graphics Forum 32, 1 (Feb 2013), 101--125.Google ScholarGoogle ScholarCross RefCross Ref
  8. Scott Daly. 1993. The visible differences predictor: An algorithm for the assessment of image fidelity. In Digital Images and Human Vision, Andrew B. Watson (Ed.). MIT Press, Cambridge, 179--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. Ferwerda, S. Pattanaik, P. Shirley, and D. Greenberg. 1997. A model of visual masking for computer graphics. In ACM SIGGRAPH. 143--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Garland and P.-S. Heckbert. 1997. Surface simplification using quadric error metrics. In ACM SIGGRAPH. 209--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Z. Govindarajulu, M. Kendall, and J. D. Gibbons. 1992. Rank correlation methods. Technometrics 34, 1 (Feb 1992), 108. DOI:http://dx.doi.org/10.2307/1269571Google ScholarGoogle ScholarCross RefCross Ref
  12. Wesley Griffin and Marc Olano. 2015. Evaluating texture compression masking effects using objective image quality assessment metrics. IEEE Transactions on Visualization and Computer Graphics 21, 8 (2015), 970--079. DOI:http://dx.doi.org/10.1109/TVCG.2015.2429576Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jinjiang Guo, Vincent Vidal, Atilla Baskurt, and Guillaume Lavoué. 2015. Evaluating the local visibility of geometric artifacts. In Proceedings of the ACM Symposium in Applied Perception. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Robert Herzog, Martin Čadík, Tunç O. Aydın, Kwang In Kim, Karol Myszkowski, and Hans-P. Seidel. 2012. NoRM: No-reference image quality metric for realistic image synthesis. Computer Graphics Forum 31, 2 (Pt 3), 545--554. DOI:http://dx.doi.org/10.1111/j.1467-8659.2012.03055.x Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Z. Karni and C. Gotsman. 2000. Spectral compression of mesh geometry. In ACM Siggraph. 279--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Guillaume Lavoué. 2011. A multiscale metric for 3D mesh visual quality assessment. Computer Graphics Forum 30, 5 (2011), 1427--1437.Google ScholarGoogle ScholarCross RefCross Ref
  17. G. Lavoué, M. C. Larabi, and Libor Váša. 2016. On the efficiency of image metrics for evaluating the visual quality of 3D models. IEEE Transactions on Visualization and Computer Graphics 22, 8 (2016), 1987--1999. DOI:http://dx.doi.org/10.1109/TVCG.2015.2480079 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Guillaume Lavoué and Rafa Mantiuk. 2015. Quality assessment in computer graphics. Visual Signal Quality Assessment: Quality of Experience (QoE) (2015), 243--286. DOI:http://dx.doi.org/10.1007/978-3-319-10368-6_9Google ScholarGoogle Scholar
  19. Patrick Ledda, Alan Chalmers, Tom Troscianko, and Helge Seetzen. 2005. Evaluation of tone mapping operators using a high dynamic range display. ACM Transactions on Graphics 24, 3 (Jul 2005), 640. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jeffrey Lubin. 1993. The use of psychophysical data and models in the analysis of display system performance. In Digital Images and Human Vision, A. B. Watson (Ed.). 163--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Mannos and D. Sakrison. 1974. The effects of a visual fidelity criterion of the encoding of images. IEEE Transactions on Information Theory 20, 4 (Jul 1974), 525--536. DOI:http://dx.doi.org/10.1109/tit.1974.1055250 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Rafal Mantiuk, Kil Joong Kim, Allan G. Rempel, and Wolfgang Heidrich. 2011. HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. In ACM Transactions on Graphics (Proc. of SIGGRAPH'11) 30, 4 (2011), Article no. 40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Rafa K. Mantiuk, Anna Tomaszewska, and Radosaw Mantiuk. 2012. Comparison of four subjective methods for image quality assessment. Computer Graphics Forum 31, 8 (Dec 2012), 2478--2491. DOI:http://dx.doi.org/10.1111/j.1467-8659.2012.03188.x Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Georges Nader, Kai Wang, H. Franck, and Florent Dupont. 2016. Just noticeable distortion profile for flat-shaded 3D mesh surfaces. IEEE Transactions on Visualization and Computer Graphics (2016). DOI:http://dx.doi.org/10.1109/TVCG.2015.2507578Google ScholarGoogle Scholar
  25. J. P. O’Shea, M. S. Banks, and M. Agrawala. 2008. The assumed light direction for perceiving shape from shading. In Proceedings of the Symposium on Applied Perception in Graphics and Visualization. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Yixin Pan, Irene Cheng, and Anup Basu. 2005. Quality metric for approximating subjective evaluation of 3-D objects. IEEE Transactions on Multimedia 7, 2 (Apr 2005), 269--279. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lijun Qu and G. W. Meyer. 2008. Perceptually guided polygon reduction. IEEE Transactions on Visualization and Computer Graphics 14, 5 (2008), 1015--1029. DOI:http://dx.doi.org/10.1109/TVCG.2008.51 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Bernice E. Rogowitz and H. Rushmeier. 2001. Are image quality metrics adequate to evaluate the quality of geometric objects? In Proceedings of SPIE. 340--348.Google ScholarGoogle Scholar
  29. Kalpana Seshadrinathan, Rajiv Soundararajan, Alan Conrad Bovik, and Lawrence K. Cormack. 2010. Study of subjective and objective quality assessment of video. IEEE Transactions on Image Processing 19, 6 (Jun 2010), 1427--41. DOI:http://dx.doi.org/10.1109/TIP.2010.2042111 Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. H. R. Sheikh and A. C. Bovik. 2006. Image information and visual quality. IEEE Transactions on Image Processing 15, 2 (Feb 2006), 430--444. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. D. Amnon Silverstein and Joyce E. Farrell. 2001. Efficient method for paired comparison. Journal of Electronic Imaging 10, 2 (2001), 394. DOI:http://dx.doi.org/10.1117/1.1344187Google ScholarGoogle ScholarCross RefCross Ref
  32. J. Ström and T. Akenine-Möller. 2005. i PACKMAN: High-quality, low-complexity texture compression for mobile phones. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware. 177--182. DOI:http://dx.doi.org/10.1145/1071866.1071877 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Jennifer Sun and Pietro Perona. 1998. Where is the sun? Nature Neuroscience (1998), 183--184. Retrieved from http://www.nature.com/neuro/journal/v1/n3/abs/nn0798.Google ScholarGoogle Scholar
  34. G. Taubin. 1995. A signal processing approach to fair surface design. In ACM Siggraph. 351--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. L. L. Thurstone. 1927. A law of comparative judgments. Psychological Review 34 (1927), 273--286.Google ScholarGoogle ScholarCross RefCross Ref
  36. Dihong Tian and Ghassan AlRegib. 2004. FQM. In Proceedings of the 12th Annual ACM International Conference on Multimedia - MULTIMEDIA 04. Association for Computing Machinery (ACM). DOI:http://dx.doi.org/10.1145/1027527.1027684Google ScholarGoogle Scholar
  37. Dihong Tian and G. AlRegib. 2008. Batex3: Bit allocation for progressive transmission of textured 3-D models. IEEE Transactions on Circuits and Systems for Video Technology 18, 1 (2008), 23--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Fakhri Torkhani, Kai Wang, and Jean-Marc Chassery. 2012. A curvature tensor distance for mesh visual quality assessment. In Proceedings of the International Conference on Computer Vision and Graphics.Google ScholarGoogle ScholarCross RefCross Ref
  39. Libor Váša and Jan Rus. 2012. Dihedral angle mesh error: A fast perception correlated distortion measure for fixed connectivity triangle meshes. Computer Graphics Forum 31, 5 (2012), 1715--1724. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Kai Wang, Fakhri Torkhani, and Annick Montanvert. 2012. A fast roughness-based approach to the assessment of 3D mesh visual quality. Computers 8 Graphics 36, 7 (2012), 808--818. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13, 4 (Apr 2004), 600--612. DOI:http://dx.doi.org/10.1109/tip.2003.819861 Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Zhou Wang and Alan C. Bovik. 2006. Modern Image Quality Assessment. Vol. 2. Morgan 8 Claypool Publishers. DOI:http://dx.doi.org/10.2200/S00010ED1V01Y200508IVM003Google ScholarGoogle Scholar
  43. Zhou Wang and Qiang Li. 2011. Information content weighting for perceptual image quality assessment. IEEE Transactions on Image Processing 20, 5 (May 2011), 1185--1198. DOI:http://dx.doi.org/10.1109/tip.2010.2092435 Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Z. Wang, E. P. Simoncelli, and A. C. Bovik. 2003. Multiscale structural similarity for image quality assessment. IEEE Asilomar Conference on Signals, Systems and Computers 2, 1 (2003), 1398--1402. DOI:http://dx.doi.org/10.1109/ACSSC.2003.1292216Google ScholarGoogle Scholar
  45. Benjamin Watson, Alinda Friedman, and Aaron McGaffey. 2001. Measuring and predicting visual fidelity. In ACM SIGGRAPH. 213--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Feng Xiao. 2000. DCT-based Video Quality Evaluation. Technical Report. Stanford University. Retrieved from http://compression.ru/video/quality.Google ScholarGoogle Scholar
  47. Sheng Yang, Chao-Hua Lee, and C. C. J. Kuo. 2004. Optimized mesh and texture multiplexing for progressive textured model transmission. In Proceedings of the ACM Multimedia Conference. 676--683. DOI:http://dx.doi.org/10.1145/1027527.1027683 Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Hojatollah Yeganeh and Zhou Wang. 2013. Objective quality assessment of tone-mapped images. IEEE Transactions on Image Processing 22, 2 (Feb 2013), 657--67. DOI:http://dx.doi.org/10.1109/TIP.2012.2221725 Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. L. Zhang. 2012. A comprehensive evaluation of full reference image quality assessment algorithms. In Proceedings of the International Conference on Image Processing (ICIP). 1477--1480.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Subjective and Objective Visual Quality Assessment of Textured 3D Meshes

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Applied Perception
          ACM Transactions on Applied Perception  Volume 14, Issue 2
          April 2017
          105 pages
          ISSN:1544-3558
          EISSN:1544-3965
          DOI:10.1145/2997647
          Issue’s Table of Contents

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 22 October 2016
          • Accepted: 1 August 2016
          • Revised: 1 July 2016
          • Received: 1 April 2016
          Published in tap Volume 14, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader