skip to main content
research-article
Public Access

Homotopy-Initial Algebras in Type Theory

Authors Info & Claims
Published:30 January 2017Publication History
Skip Abstract Section

Abstract

We investigate inductive types in type theory, using the insights provided by homotopy type theory and univalent foundations of mathematics. We do so by introducing the new notion of a homotopy-initial algebra. This notion is defined by a purely type-theoretic contractibility condition that replaces the standard, category-theoretic universal property involving the existence and uniqueness of appropriate morphisms. Our main result characterizes the types that are equivalent to W-types as homotopy-initial algebras.

References

  1. M. Abbott, T. Altenkirch, and N. Ghani. 2005. Containers: Constructing strictly positive types. Theoretical Computer Science 342, 1 (2005), 3--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. P. Aczel. 2014. The structure identity principle and the univalence axiom. The Bulletin of Symbolic Logic 342, 3 (2014), 376.Google ScholarGoogle Scholar
  3. S. Awodey and A. Bauer. 2004. Propositions as [types]. Journal of Logic and Computation 14, 4 (2004), 447--471. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. Awodey, N. Gambino, and K. Sojakova. 2012. Inductive types in homotopy type theory. In Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer Science (LICS’12). IEEE Computer Society, 95--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Awodey and M. Warren. 2009. Homotopy-theoretic models of identity types. Mathematical Proceedings of the Cambridge Philosophical Society 146, 1 (2009), 45--55. Google ScholarGoogle ScholarCross RefCross Ref
  6. Y. Bertot and P. Castéran. 2004. Interactive Theorem Proving and Program Development. Coq’Art: the Calculus of Inductive Constructions. Springer-Verlag. Google ScholarGoogle ScholarCross RefCross Ref
  7. R. Blackwell, G. M. Kelly, and A. J. Power. 1989. Two-dimensional monad theory. Journal of Pure and Applied Algebra 59, 1 (1989), 1--41. Google ScholarGoogle ScholarCross RefCross Ref
  8. M. Boardman and R. Vogt. 1973. Homotopy-Invariant Algebraic Structures on Topological Spaces. Number 347 in Lecture Notes in Mathematics. Springer-Verlag. Google ScholarGoogle ScholarCross RefCross Ref
  9. T. Coquand and C. Paulin-Mohring. 1990. Inductively defined types. In International Conference on Computer Logic (COLOG’88), Lecture Notes in Computer Science, Vol. 417. Springer, 50--66. Google ScholarGoogle ScholarCross RefCross Ref
  10. P. Dybjer. 1997. Representing inductively defined sets by well-orderings in Martin-Löf’s type theory. Theoretical Computer Science 176 (1997), 329--335. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. N. Gambino and R. Garner. 2008. The identity type weak factorisation system. Theoretical Computer Science 409, 3 (2008), 94--109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. N. Gambino and M. Hyland. 2004. Well-founded trees and dependent polynomial functors. In Types for Proofs and Programs (TYPES’03), Lecture Notes in Computer Science, Vol. 3085, S. Berardi, M. Coppo, and F. Damiani (Eds.). Springer, 210--225. Google ScholarGoogle ScholarCross RefCross Ref
  13. H. Goguen and Z. Luo. 1993. Inductive data types: Well-ordering types revisited. In Logical Environments, G. Huet and G. Plotkin (Eds.). Cambridge University Press, 198--218.Google ScholarGoogle Scholar
  14. M. Hofmann. 1997. Extensional Constructs in Intensional Type Theory. Springer-Verlag. Google ScholarGoogle ScholarCross RefCross Ref
  15. M. Hofmann and T. Streicher. 1998. The groupoid interpretation of type theory. In Twenty-Five Years of Constructive Type Theory 1995 (Oxford Logic Guides), Vol. 36. Oxford University Press, 83--111.Google ScholarGoogle Scholar
  16. A. Joyal. 2014. Categorical homotopy type theory. Slides of a seminar given at MIT. (2014). Available from http://ncatlab.org/homotopytypetheory/files/Joyal.pdf.Google ScholarGoogle Scholar
  17. C. Kapulkin and P. LeFanu Lumsdaine. 2016. The Simplicial Model of Univalent Foundations (after Voevodsky). (2016). arXiv:1211.2851v4.Google ScholarGoogle Scholar
  18. J. Kock. 2012. Data types with symmetries and polynomial functors over groupoids. Electronic Notes in Theoretical Computer Science 286 (2012), 351--365. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. F. W. Lawvere. 1964. An elementary theory of the category of sets. Proceedings of the National Academy of Sciences 52, 6 (1964), 1506--11. Google ScholarGoogle ScholarCross RefCross Ref
  20. P. LeFanu Lumsdaine. 2010a. Higher Categories from Type Theories. Ph.D. dissertation. Carnegie Mellon University.Google ScholarGoogle Scholar
  21. P. LeFanu Lumsdaine. 2010b. Weak ω-categories from intensional type theory. Logical Methods in Computer Science 6 (2010), 1--19.Google ScholarGoogle Scholar
  22. P. LeFanu Lumsdaine. 2011. Higher inductive types: A tour of the menagerie. (2011). Post on the Homotopy Type Theory blog.Google ScholarGoogle Scholar
  23. J. Lurie. 2009. Higher Topos Theory. Princeton University Press.Google ScholarGoogle Scholar
  24. P. Martin-Löf. 1975. An intuitionistic theory of types: Predicative part. In Logic Colloquium 1973, H. Rose and J. Shepherdson (Eds.). North-Holland, 73--118.Google ScholarGoogle Scholar
  25. P. Martin-Löf. 1984. Intuitionistic Type Theory. Notes by G. Sambin of a series of lectures given in Padua, 1980. (1984). Bibliopolis.Google ScholarGoogle Scholar
  26. I. Moerdijk and E. Palmgren. 2000. Well-founded trees in categories. Annals of Pure and Applied Logic 104 (2000), 189--218. Google ScholarGoogle ScholarCross RefCross Ref
  27. B. Nordström, K. Petersson, and J. Smith. 1990. Programming in Martin-Löf Type Theory. Oxford University Press.Google ScholarGoogle Scholar
  28. B. Nordström, K. Petersson, and J. Smith. 2000. Martin-Löf type theory. In Handbook of Logic in Computer Science, Vol. 5. Oxford University Press, 1--37.Google ScholarGoogle Scholar
  29. C. Paulin-Mohring. 1993. Inductive definitions in the system Coq—Rules and properties. In Proceedings of the International Conference on Typed Lambda Calculi and Applications (TLCA’93), Vol. 664. Springer, 328--345. Google ScholarGoogle ScholarCross RefCross Ref
  30. K. Petersson and D. Synek. 1989. A set constructor for inductive sets in Martin-Löfs type theory. In Category Theory and Computer Science, Lecture Notes in Computer Science, Vol. 389. Springer-Verlag, 128--140. Google ScholarGoogle ScholarCross RefCross Ref
  31. M. Shulman. 2011. Homotopy Type Theory, VI. (2011). Post on the n-category cafe blog.Google ScholarGoogle Scholar
  32. K. Sojakova. 2014. Higher Inductive Types as Homotopy-Initial Algebras. Technical Report CMU-CS-14-101R. Carnegie Mellon University. Available at http://reports-archive.adm.cs.cmu.edu/.Google ScholarGoogle Scholar
  33. K. Sojakova. 2015. Higher inductive types as homotopy-initial algebras. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’15). ACM, 31--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. K. Sojakova. 2016. Higher Inductive Types as Homotopy-initial Algebras. Ph.D. dissertation. Carnegie Mellon University.Google ScholarGoogle Scholar
  35. T. Streicher. 1993. Investigations into intensional type theory. Habilitation thesis, Ludwig-Maximilans-Universität München.Google ScholarGoogle Scholar
  36. The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study.Google ScholarGoogle Scholar
  37. B. van den Berg and R. Garner. 2011. Types are weak ω-groupoids. Journal of the London Mathematical Society 102, 2 (2011), 370--394. Google ScholarGoogle ScholarCross RefCross Ref
  38. B. van den Berg and I. Moerdijk. 2015. W-types in homotopy type theory. Mathematical Structures in Computer Science 25, 5 (2015), 1100--1115. Google ScholarGoogle ScholarCross RefCross Ref
  39. V. Voevodsky. 2009. Notes on type systems. (2009). Unpublished paper.Google ScholarGoogle Scholar
  40. V. Voevodsky. 2014. The equivalence axiom and univalent models of type theory. (Talk at CMU on February 4, 2010). arXiv:1402.5556v2.Google ScholarGoogle Scholar
  41. V. Voevodsky. 2015. An experimental library of formalized mathematics based on the univalent foundations. Mathematical Structures in Computer Science 25, 5 (2015), 1278--1294. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Homotopy-Initial Algebras in Type Theory

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image Journal of the ACM
          Journal of the ACM  Volume 63, Issue 6
          February 2017
          233 pages
          ISSN:0004-5411
          EISSN:1557-735X
          DOI:10.1145/3038256
          Issue’s Table of Contents

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 30 January 2017
          • Accepted: 1 October 2016
          • Revised: 1 April 2016
          • Received: 1 April 2015
          Published in jacm Volume 63, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader