skip to main content
research-article
Public Access

Visual Analysis of Brain Networks Using Sparse Regression Models

Authors Info & Claims
Published:06 February 2018Publication History
Skip Abstract Section

Abstract

Studies of the human brain network are becoming increasingly popular in the fields of neuroscience, computer science, and neurology. Despite this rapidly growing line of research, gaps remain on the intersection of data analytics, interactive visual representation, and the human intelligence—all needed to advance our understanding of human brain networks. This article tackles this challenge by exploring the design space of visual analytics. We propose an integrated framework to orchestrate computational models with comprehensive data visualizations on the human brain network. The framework targets two fundamental tasks: the visual exploration of multi-label brain networks and the visual comparison among brain networks across different subject groups. During the first task, we propose a novel interactive user interface to visualize sets of labeled brain networks; in our second task, we introduce sparse regression models to select discriminative features from the brain network to facilitate the comparison. Through user studies and quantitative experiments, both methods are shown to greatly improve the visual comparison performance. Finally, real-world case studies with domain experts demonstrate the utility and effectiveness of our framework to analyze reconstructions of human brain connectivity maps. The perceptually optimized visualization design and the feature selection model calibration are shown to be the key to our significant findings.

Skip Supplemental Material Section

Supplemental Material

References

  1. Dale et al. 2012. FreeSurfer. 2012. Retrieved from http://surfer.nmr.mgh.harvard.edu/.Google ScholarGoogle Scholar
  2. Basak Alper, Benjamin Bach, Nathalie Henry Riche, Tobias Isenberg, and Jean-Daniel Fekete. 2013. Weighted graph comparison techniques for brain connectivity analysis. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems. 483--492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. B. Bach, Riche N. Henry, T. Dwyer, T. Madhyastha, J.-D. Fekete, and T. Grabowski. 2015. Small multipiles: Piling time to explore temporal patterns in dynamic networks. Computer Graphics Forum 34, 3 (2015), 31--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. B. Bach, C. Shi, N. Heulot, T. Madhyastha, T. Grabowski, and P. Dragicevic. 2016. Time curves: Folding time to visualize patterns of temporal evolution in data. IEEE Transactions on Visualization and Computer Graphics 22, 1 (2016), 559--568.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. 1998. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall PTR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Anastasia Bezerianos, Fanny Chevalier, Pierre Dragicevic, Niklas Elmqvist, and Jean-Daniel Fekete. 2010. GraphDice: A system for exploring multivariate social networks. Computer Graphics Forum 29, 3 (2010), 863--872. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bokai Cao, Xiangnan Kong, Jingyuan Zhang, Philip S. Yu, and Ann B. Ragin. 2015. Mining brain networks using multiple side views for neurological disorder identification. In Proceedings of IEEE International Conference on Data Mining (ICDM’15). 709--714. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Nan Cao, Jimeng Sun, Yu-Ru Lin, David Gotz, Shixia Liu, and Huamin Qu. 2010. FacetAtlas: Multifaceted visualization for rich text corpora. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 1172--1181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Duen Horng Chau, Aniket Kittur, Jason I. Hong, and Christos Faloutsos. 2011. Apolo: Making sense of large network data by combining rich user interaction and machine learning. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 167--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Xi Chen, Seyoung Kim, Qihang Lin, Jaime G. Carbonell, and Eric P. Xing. 2010. Graph-structured multi-task regression and an efficient optimization method for general fused Lasso. arXiv Preprint:1005.3579 (2010).Google ScholarGoogle Scholar
  11. Haibin Cheng, Haifeng Chen, Guofei Jiang, and Kenji Yoshihira. 2007. Nonlinear feature selection by relevance feature vector machine. Machine Learning and Data Mining in Pattern Recognition. Springer, 144--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chun-Hsien Chou and Yun-Chin Li. 1995. A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile. IEEE Transactions on Circuits and Systems for Video Technology 5, 6 (1995), 467--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Nicolas A. Crossley, Andrea Mechelli, Jessica Scott, Francesco Carletti, Peter T. Fox, Philip McGuire, and Edward T. Bullmore. 2014. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137, 8 (2014), 2382--2395.Google ScholarGoogle ScholarCross RefCross Ref
  14. Madelaine Daianu, Neda Jahanshad, Talia M. Nir, Clifford R. Jack, Michael W. Weiner, Matt A. Bernstein, and Paul M. Thompson. 2015. Rich club analysis in the Alzheimer’s disease connectome reveals a relatively undisturbed structural core network. Human Brain Mapping 36, 8 (2015), 3087--3103.Google ScholarGoogle ScholarCross RefCross Ref
  15. Madelaine Daianu, Neda Jahanshad, Talia M. Nir, Arthur W. Toga, Clifford R. Jack Jr, Michael W. Weiner, and Paul M. Thompson, for the Alzheimer’s Disease Neuroimaging Initiative. 2013. Breakdown of brain connectivity between normal aging and Alzheimer’s disease: A structural k-core network analysis. Brain Connectivity 3, 4 (2013), 407--422.Google ScholarGoogle ScholarCross RefCross Ref
  16. Manoranjan Dash and Poon Wei Koot. 2009. Feature selection for clustering. Encyclopedia of Database Systems. Springer, 1119--1125.Google ScholarGoogle Scholar
  17. Ian Davidson, Sean Gilpin, Owen Carmichael, and Peter Walker. 2013. Network discovery via constrained tensor analysis of fMRI data. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 194--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Rahul S. Desikan, Florent Ségonne, Bruce Fischl, Brian T. Quinn, Bradford C. Dickerson, Deborah Blacker, Randy L. Buckner, Anders M. Dale, R. Paul Maguire, Bradley T. Hyman, et al. 2006. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 3 (2006), 968--980.Google ScholarGoogle ScholarCross RefCross Ref
  19. Jennifer G. Dy and Carla E. Brodley. 2000. Feature subset selection and order identification for unsupervised learning. In Proceedings of the International Conference on Machine Learning. 247--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Manuel Freire, Catherine Plaisant, Ben Shneiderman, and Jen Golbeck. 2010. ManyNets: An interface for multiple network analysis and visualization. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 213--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Michael Gleicher, Danielle Albers, Rick Walker, Ilir Jusufi, Charles D. Hansen, and Jonathan C. Roberts. 2011. Visual comparison for information visualization. Information Visualization 10, 4 (2011), 289--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ilan I. Goldberg, Michal Harel, and Rafael Malach. 2006. When the brain loses its self: Prefrontal inactivation during sensorimotor processing. Neuron 50, 2 (2006), 329--339.Google ScholarGoogle ScholarCross RefCross Ref
  23. William R. Gray, John A. Bogovic, Joshua T. Vogelstein, Bennett A. Landman, Jerry L. Prince, and R. Jacob Vogelstein. 2012. Magnetic resonance connectome automated pipeline: An overview. IEEE Pulse 3, 2 (2012), 42--48.Google ScholarGoogle ScholarCross RefCross Ref
  24. David Hallac, Jure Leskovec, and Stephen Boyd. 2015. Network lasso: Clustering and optimization in large graphs. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 387--396. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mark Harrower and Cynthia A. Brewer. 2003. ColorBrewer. org: An online tool for selecting colour schemes for maps. The Cartographic Journal 40, 1 (2003), 27--37.Google ScholarGoogle ScholarCross RefCross Ref
  26. Jingrui He and Jaime Carbonell. 2010. Coselection of features and instances for unsupervised rare category analysis. Statistical Analysis and Data Mining 3, 6 (2010), 417--430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Xiaofei He, Deng Cai, and Partha Niyogi. 2005. Laplacian score for feature selection. In Advances in Neural Information Processing Systems, Yair Weiss, Bernhard Schölkopf, and John Platt (Eds.). MIT Press, 507--514. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ivan Herman, Guy Melancon, and M. Scott Marshall. 2000. Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics 6, 1 (2000), 24--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Shuai Huang, Jing Li, Jieping Ye, Adam Fleisher, Kewei Chen, Teresa Wu, and Eric Reiman. 2011. Brain effective connectivity modeling for Alzheimer’s disease by sparse gaussian bayesian network. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 931--939. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Scott A. Huettel, Allen W. Song, and Gregory McCarthy. 2008. Functional Magnetic Resonance Imaging (2nd ed.). Sinauer Associates.Google ScholarGoogle Scholar
  31. Yan Jin, Yonggang Shi, Liang Zhan, Boris A. Gutman, Greig I. de Zubicaray, Katie L. McMahon, Margaret J. Wright, Arthur W. Toga, and Paul M. Thompson. 2014. Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics. NeuroImage 100 (2014), 75--90.Google ScholarGoogle ScholarCross RefCross Ref
  32. D. K. Jones. 2008. Tractography gone wild: Probabilistic fibre tracking using the wild bootstrap with diffusion tensor MRI. IEEE Transactions on Medical Imaging 27, 9 (2008), 1268--1274.Google ScholarGoogle ScholarCross RefCross Ref
  33. Andreas Kerren, Helen Purchase, and Matthew O. Ward. 2014. Multivariate network visualization. In Proceedings of the Dagstuhl Seminar 13201. Springer.Google ScholarGoogle Scholar
  34. YeongSeog Kim, W. Nick Street, and Filippo Menczer. 2000. Feature selection in unsupervised learning via evolutionary search. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 365--369. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Xiangnan Kong and Philip S. Yu. 2014. Brain network analysis: A data mining perspective. ACM SIGKDD Explorations Newsletter 15, 2 (2014), 30--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Xiangnan Kong, Philip S. Yu, Xue Wang, and Ann B. Ragin. 2013. Discriminative feature selection for uncertain graph classification. In Proceedings of the SIAM International Conference on Data Mining. 82--93.Google ScholarGoogle Scholar
  37. Josua Krause, Adam Perer, and Enrico Bertini. 2014. INFUSE: Interactive feature selection for predictive modeling of high dimensional data. IEEE Transactions on Visualization and Computer Graphics 20, 12 (2014), 1614--1623.Google ScholarGoogle ScholarCross RefCross Ref
  38. Martin H. Law, Anil K. Jain, and Mário Figueiredo. 2002. Feature selection in mixture-based clustering. In Advances in Neural Information Processing Systems, Suzanna Becker, Klaus Obermayer, and Sebastian Thrun (Eds.). MIT Press, 625--632. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Jun Liu and Jieping Ye. 2010. Moreau-Yosida regularization for grouped tree structure learning. In Advances in Neural Information Processing Systems, John Lafferty, Christopher Williams, John Shawe-Taylor, Richard Zemel, and Aron Culotta (Eds.). Curran Associates, 1459--1467. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. David A. Loewenstein, Warren W. Barker, Jen-Yueh Chang, Anthony Apicella, Fumihito Yoshii, Paresh Kothari, Bonnie Levin, and Ranjan Duara. 1989. Predominant left hemisphere metabolic dysfunction in dementia. Archives of Neurology 46, 2 (1989), 146--152.Google ScholarGoogle ScholarCross RefCross Ref
  41. Klaus-Dietmar Merboldt, Wolfgang Hanicke, and Jens Frahm. 1985. Self-diffusion NMR imaging using stimulated echoes. Journal of Magnetic Resonance 64, 3 (1985), 479--486.Google ScholarGoogle Scholar
  42. Pabitra Mitra, C.A. Murthy, and Sankar K. Pal. 2002. Unsupervised feature selection using feature similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 3 (2002), 301--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Zeqian Shen, Kwan-Liu Ma, and Tina Eliassi-Rad. 2006. Visual analysis of large heterogeneous social networks by semantic and structural abstraction. IEEE Transactions on Visualization and Computer Graphics 12, 6 (2006), 1427--1439. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Lei Shi, Hanghang Tong, and Xinzhu Mu. 2015. BrainQuest: Perception-guided brain network comparison. In Proceedings of IEEE International Conference on Data Mining (ICDM). 379--388. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Ben Shneiderman and Aleks Aris. 2006. Network visualization by semantic substrates. IEEE Transactions on Visualization and Computer Graphics 12, 5 (2006), 733--740. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Paul J. Silvia and Ann G. Phillips. 2004. Self-awareness, self-evaluation, and creativity. Personality and Social Psychology Bulletin 30, 8 (2004), 1009--1017.Google ScholarGoogle ScholarCross RefCross Ref
  47. Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2013. A sparse-group lasso. Journal of Computational and Graphical Statistics 22, 2 (2013), 231--245.Google ScholarGoogle ScholarCross RefCross Ref
  48. Liang Sun, Rinkal Patel, Jun Liu, Kewei Chen, Teresa Wu, Jing Li, Eric Reiman, and Jieping Ye. 2009. Mining brain region connectivity for alzheimer’s disease study via sparse inverse covariance estimation. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1335--1344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Jiliang Tang, Salem Alelyani, and Huan Liu. 2014. Feature selection for classification: A review. In Data Classification: Algorithms and Applications. Charu Aggarwal (Ed.), Chapman 8 Hall/CRC Data Mining and Knowledge Discovery Series. CRC Press.Google ScholarGoogle Scholar
  50. Paul M. Thompson, Michael S. Mega, Roger P. Woods, Chris I. Zoumalan, Chris J. Lindshield, Rebecca E. Blanton, Jacob Moussai, Colin J. Holmes, Jeffrey L. Cummings, and Arthur W. Toga. 2001. Cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cerebral Cortex 11, 1 (2001), 1--16.Google ScholarGoogle ScholarCross RefCross Ref
  51. Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (1996), 267--288.Google ScholarGoogle Scholar
  52. R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. 2005. Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67, 1 (2005), 91--108.Google ScholarGoogle ScholarCross RefCross Ref
  53. Martin Wattenberg. 2006. Visual exploration of multivariate graphs. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 811--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Jieping Ye, Kewei Chen, Teresa Wu, Jing Li, Zheng Zhao, Rinkal Patel, Min Bae, Ravi Janardan, Huan Liu, Gene Alexander, and others. 2008. Heterogeneous data fusion for alzheimer’s disease study. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1025--1033. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Tong Zhang. 2011. Adaptive forward-backward greedy algorithm for learning sparse representations. IEEE Transactions on Information Theory 57, 7 (2011), 4689--4708. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Zheng Zhao and Huan Liu. 2007. Spectral feature selection for supervised and unsupervised learning. In Proceedings of the International Conference on Machine Learning. 1151--1157. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Hui Zou and Trevor Hastie. 2005. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67, 2 (2005), 301--320.Google ScholarGoogle ScholarCross RefCross Ref
  58. Zhaonian Zou, Hong Gao, and Jianzhong Li. 2010. Discovering frequent subgraphs over uncertain graph databases under probabilistic semantics. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 633--642. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Visual Analysis of Brain Networks Using Sparse Regression Models

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Knowledge Discovery from Data
        ACM Transactions on Knowledge Discovery from Data  Volume 12, Issue 1
        Special Issue (IDEA) and Regular Papers
        February 2018
        363 pages
        ISSN:1556-4681
        EISSN:1556-472X
        DOI:10.1145/3178542
        Issue’s Table of Contents

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 6 February 2018
        • Accepted: 1 December 2016
        • Revised: 1 August 2016
        • Received: 1 December 2015
        Published in tkdd Volume 12, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader