skip to main content
10.1145/3025453.3025460acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Public Access

Stretching the Bounds of 3D Printing with Embedded Textiles

Published:02 May 2017Publication History

ABSTRACT

Textiles are an old and well developed technology that have many desirable characteristics. They can be easily folded, twisted, deformed, or cut; some can be stretched; many are soft. Textiles can maintain their shape when placed under tension and can even be engineered with variable stretching ability. Conversely, 3D printing is a relatively new technology that can precisely produce functional, rigid objects with custom geometry. Combining 3D printing and textiles opens up new opportunities for rapidly creating rigid objects with embedded flexibility as well as soft materials imbued with additional functionality. In this paper, we introduce a suite of techniques for integrating 3D printing with textiles during the printing process, opening up a new design space that takes inspiration from both fields. We demonstrate how the malleability, stretchability and aesthetic qualities of textiles can enhance rigid printed objects, and how textiles can be augmented with functional properties enabled by 3D printing.

Skip Supplemental Material Section

Supplemental Material

pn1023.mp4

mp4

18 MB

pn1023p.mp4

mp4

3.3 MB

References

  1. 1. 3D Systems. 2015. How to create a fabricate 3D tech-style fashion. (2015). https://www.youtube.com/watch?v=qKiHso484vwGoogle ScholarGoogle Scholar
  2. 2. Lea Albaugh. 2015. Lea, making things: clothes that move: why, and how? (2015). http://www.instamatique.com/blog/clothes-that-move-why-and-how/Google ScholarGoogle Scholar
  3. 3. All3DP. 2016. 27 great 3D printer filament types (a guide). (2016). https://all3dp.com/best-3d-printer filament-types-pla-abs-pet-exotic-wood-metal/Google ScholarGoogle Scholar
  4. 4. David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques - SIGGRAPH '98. ACM Press, New York, New York, USA, 43--54. DOI: http://dx.doi.org/10.1145/280814.280821 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. 5. E.J.W. Barber. 1991. Prehistoric textiles: The development of cloth in the neolithic and bronze ages with special reference to the aegean. Princeton University Press. https://books.google.com/books?id=HnSlynSfeEICGoogle ScholarGoogle Scholar
  6. 6. Benjamin Bridgens and Matthew Birchall. 2012. Form and function: The significance of material properties in the design of tensile fabric structures. Engineering Structures 44 (2012), 1 -- 12. DOI: http://dx.doi.org/10.1016/j.engstruct.2012.05.044 Google ScholarGoogle ScholarCross RefCross Ref
  7. 7. Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. In Proceedings of the 29th annual conference on Computer graphics and interactive techniques - SIGGRAPH '02, Vol. 21. ACM Press, New York, New York, USA, 594. DOI: http://dx.doi.org/10.1145/566570.566623 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. 8. I-Ming Chen, Shusong Xing, R. Tay, and Song Huat Yeo. 2005. Many strings attached: from conventional to robotic marionette manipulation. IEEE Robotics Automation Magazine 12, 1 (Mar 2005), 59--74. DOI: http://dx.doi.org/10.1109/MRA.2005.1411420 Google ScholarGoogle ScholarCross RefCross Ref
  9. 9. Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira Forberg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Computational Design of Mechanical Characters. ACM Trans. Graph. 32, 4, Article 83 (Jul 2013), Article 83, 12 pages. DOI:http://dx.doi.org/10.1145/2461912.2461953 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. 10. Erik D. Demaine and Martin L. Demaine. 2001. Recent results in computational origami. In Origami3: Proceedings of the 3rd International Meeting of Origami Science, Math, and Education (OSME 2001). A K Peters, Monterey, California, 3--16.Google ScholarGoogle Scholar
  11. 11. Stephen Eichhorn, John W.S. Hearle, Mike Jaffe, and Takeshi Kikutani. 2009. Handbook of textile fibre structure: Natural, regenerated, inorganic and specialist fibres. Vol. 2. Elsevier.Google ScholarGoogle Scholar
  12. 12. Michael Eisenberg. 2003. Mindstuff educational technology beyond the computer. Convergence: The International Journal of Research into New Media Technologies 9, 2 (2003), 29--53. Google ScholarGoogle ScholarCross RefCross Ref
  13. 13. John W.S. Hearle. 1967. The structural mechanics of fibers. In Journal of Polymer Science Part C: Polymer Symposia, Vol. 20. Wiley Online Library, 215--251. Google ScholarGoogle ScholarCross RefCross Ref
  14. 14. John W.S. Hearle, Percy Grosberg, and Stanley Backer. 1969. Structural mechanics of fibers, yarns, and fabrics. Wiley--Interscience.Google ScholarGoogle Scholar
  15. 15. John W.S. Hearle and William E. Morton. 2008. Physical properties of textile fibres. Elsevier.Google ScholarGoogle Scholar
  16. 16. Felix Heibeck, Basheer Tome, Clark Della Silva, and Hiroshi Ishii. 2015. uniMorph: Fabricating thin film composites for shape-changing interfaces. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (UIST '15). ACM, New York, NY, USA, 233--242. DOI: http://dx.doi.org/10.1145/2807442.2807472 Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. 17. Scott E. Hudson. 2014. Printing Teddy Bears: A Technique for 3D Printing of Soft Interactive Objects. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '14). ACM, New York, NY, USA, 459--468. DOI: http://dx.doi.org/10.1145/2556288.2557338 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. 18. Instructables. 2016. How to 3D print onto fabric. (2016). http://www.instructables.com/id/How-to-3D-Print-OntoFabric/Google ScholarGoogle Scholar
  19. 19. Gierad Laput, Xiang 'Anthony' Chen, and Chris Harrison. 2015. 3D printed hair: fused deposition modeling of soft strands, fibers, and bristles. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (UIST '15). ACM, New York, NY, USA, 593--597. DOI: http://dx.doi.org/10.1145/2807442.2807484 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. 20. R. Melnikova, A. Ehrmann, and K. Finsterbusch. 2014. 3D printing of textile-based structures by fused deposition modelling (FDM) with different polymer materials. In IOP Conference Series: Materials Science and Engineering, Vol. 62. IOP Publishing, 012018. Google ScholarGoogle ScholarCross RefCross Ref
  21. 21. Jussi Mikkonen, Reetta Myllymäki, Sari Kivioja, Santeri Vanhakartano, and Helena Suonsilta. 2013. Printed material and fabric. Nordes 1, 5 (2013).Google ScholarGoogle Scholar
  22. 22. Stefanie Mueller, Sangha Im, Serafima Gurevich, Alexander Teibrich, Lisa Pfisterer, François Guimbretière, and Patrick Baudisch. 2014a. WirePrint: 3D printed previews for fast prototyping. In Proceedings of the 27th annual ACM Symposium on User Interface Software & Technology (UIST '14). ACM, 273--280.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. 23. Stefanie Mueller, Tobias Mohr, Kerstin Guenther, Johannes Frohnhofen, Kai-Adrian Rollmann, and Patrick Baudisch. 2014b. faBrickation: Fast 3D printing of functional objects by integrating construction kit building blocks. In CHI '14 Extended Abstracts on Human Factors in Computing Systems (CHI EA '14). ACM, New York, NY, USA, 527--530. DOI: http://dx.doi.org/10.1145/2559206.2574779 Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. 24. Grace Ngai, Stephen C.F. Chan, Joey C.Y. Cheung, and Winnie W.Y. Lau. 2009. The TeeBoard: An Education-friendly Construction Platform for e-Textiles and Wearable Computing. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '09). ACM, New York, NY, USA, 249--258. DOI: http://dx.doi.org/10.1145/1518701.1518742 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. 25. Simon Olberding, Sergio Soto Ortega, Klaus Hildebrandt, and Jürgen Steimle. 2015. Foldio: Digital fabrication of interactive and shape-changing objects with foldable printed electronics. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (UIST '15). ACM, New York, NY, USA, 223--232. DOI: http://dx.doi.org/10.1145/2807442.2807494 Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. 26. Eujin Pei, Jinsong Shen, and Jennifer Watling. 2015. Direct 3D printing of polymers onto textiles: experimental studies and applications. Rapid Prototyping Journal 21, 5 (Aug 2015), 556--571. DOI: http://dx.doi.org/10.1108/RPJ-09--2014-0126Google ScholarGoogle ScholarCross RefCross Ref
  27. 27. Huaishu Peng, Jennifer Mankoff, Scott E. Hudson, and James McCann. 2015. A layered fabric 3D printer for soft interactive objects. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15), Vol. 1. ACM Press, New York, New York, USA, 1789--1798. DOI: http://dx.doi.org/10.1145/2702123.2702327 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. 28. Hannah Perner-Wilson, Leah Buechley, and Mika Satomi. 2011. Handcrafting Textile Interfaces from a Kit-of-no-parts. In Proceedings of the Fifth International Conference on Tangible, Embedded, and Embodied Interaction (TEI '11). ACM, New York, NY, USA, 61--68. DOI:http://dx.doi.org/10.1145/1935701.1935715 Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. 29. Ivan Poupyrev, Nan-Wei Gong, Shiho Fukuhara, Mustafa Emre Karagozler, Carsten Schwesig, and Karen E. Robinson. 2016. Project Jacquard: Interactive digital textiles at scale. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI '16). ACM, New York, NY, USA, 4216--4227. DOI: http://dx.doi.org/10.1145/2858036.2858176 Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. 30. Daniela K. Rosner and Kimiko Ryokai. 2008. Spyn: Augmenting knitting to support storytelling and reflection. In Proceedings of the 10th International Conference on Ubiquitous Computing (UbiComp '08). ACM, New York, NY, USA, 340--349. DOI: http://dx.doi.org/10.1145/1409635.1409682 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. 31. Lilia Sabantina, Franziska Kinzel, Andrea Ehrmann, and Karin Finsterbusch. 2015. Combining 3D printed forms with textile structures-mechanical and geometrical properties of multi-material systems. In IOP Conference Series: Materials Science and Engineering, Vol. 87. IOP Publishing, 012005. Google ScholarGoogle ScholarCross RefCross Ref
  32. 32. Ashish Kumar Sen. 2007. Coated textiles: principles and applications. Crc Press. Google ScholarGoogle ScholarCross RefCross Ref
  33. 33. Michael J. Sinclair and Kerwin Wang. 2003. Thermal actuator improvements: tapering and folding. In Proceedings of SPIE - The International Society for Optical Engineering, Jung-Chih Chiao, Vijay K. Varadan, and Carles Can (Eds.). 237--251. DOI: http://dx.doi.org/10.1117/12.499129 Google ScholarGoogle ScholarCross RefCross Ref
  34. 34. Alexander Teibrich, Stefanie Mueller, François Guimbretière, Robert Kovacs, Stefan Neubert, and Patrick Baudisch. 2015. Patching physical objects. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (UIST '15). ACM, New York, NY, USA, 83--91. DOI: http://dx.doi.org/10.1145/2807442.2807467 Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. 35. Cesar Torres, Tim Campbell, Neil Kumar, and Eric Paulos. 2015. HapticPrint: Designing feel aesthetics for 3D printing. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology UIST '15. ACM Press, New York, New York, USA, 583--591. DOI: http://dx.doi.org/10.1145/2807442.2807492 Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. 36. John T. Williams. 2009. Textiles for cold weather apparel. Elsevier. Google ScholarGoogle ScholarCross RefCross Ref
  37. 37. Lining Yao, Ryuma Niiyama, Jifei Ou, Sean Follmer, Clark Della Silva, and Hiroshi Ishii. 2013. PneUI: Pneumatically actuated soft composite materials for shape changing interfaces. In Proceedings of the 26th annual ACM Symposium on User Interface Software & Technology (UIST '13). ACM, ACM, 13--22.Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    CHI '17: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
    May 2017
    7138 pages
    ISBN:9781450346559
    DOI:10.1145/3025453

    Copyright © 2017 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 2 May 2017

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

    Acceptance Rates

    CHI '17 Paper Acceptance Rate600of2,400submissions,25%Overall Acceptance Rate6,199of26,314submissions,24%

    Upcoming Conference

    CHI '24
    CHI Conference on Human Factors in Computing Systems
    May 11 - 16, 2024
    Honolulu , HI , USA

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader