skip to main content
10.1145/3025453.3026016acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

TrussFab: Fabricating Sturdy Large-Scale Structures on Desktop 3D Printers

Authors Info & Claims
Published:02 May 2017Publication History

ABSTRACT

We present TrussFab, an integrated end-to-end system that allows users to fabricate large scale structures that are sturdy enough to carry human weight. TrussFab achieves the large scale by complementing 3D print with plastic bottles. It does not use these bottles as "bricks" though, but as beams that form structurally sound node-link structures, also known as trusses, allowing it to handle the forces resulting from scale and load. TrussFab embodies the required engineering knowledge, allowing non-engineers to design such structures and to validate their design using integrated structural analysis. We have used TrussFab to design and fabricate tables and chairs, a 2.5 m long bridge strong enough to carry a human, a functional boat that seats two, and a 5 m diameter dome.

Skip Supplemental Material Section

Supplemental Material

pn4616-file3.mp4

mp4

80.6 MB

pn4616p.mp4

mp4

2.9 MB

p2606-kovacs.mp4

mp4

223.9 MB

References

  1. Harshit Agrawal, Udayan Umapathi, Robert Kovacs, Johannes Frohnhofen, Hsiang-Ting Chen, Stefanie Mueller, and Patrick Baudisch. 2015. Protopiper: Physically Sketching Room-Sized Objects at Actual Scale. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (UIST '15), ACM, NY, NY, USA, 427--436. http://doi.org/10.1145/2807442.2807505 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Daniel Ashbrook, Shitao Guo, and Alan Lambie. 2016. Towards Augmented Fabrication: Combining Fabricated and Existing Objects. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA '16), ACM, NY, NY, USA, 1510--1518. http://doi.org/10.1145/2851581.2892509Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Xiang "Anthony" Chen, Stelian Coros, Jennifer Mankoff, and Scott E. Hudson. 2015. Encore: 3D Printed Augmentation of Everyday Objects with Printed-Over, Affixed and Interlocked Attachments. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (UIST '15), ACM, NY, NY, USA, 73--82. http://doi.org/10.1145/2807442.2807498Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Kenneth C. Cheung and Neil Gershenfeld. 2013. Reversibly Assembled Cellular Composite Materials. Science 341, 6151: 1219--1221. http://doi.org/10.1177/0892705714554493 Google ScholarGoogle ScholarCross RefCross Ref
  5. Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira Forberg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Computational Design of Mechanical Characters. ACM Transactions on Graphics 32, 4: 1. http://doi.org/10.1145/2461912.2461953Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Laura Devendorf and Kimiko Ryokai. 2015. Being the Machine: Reconfiguring Agency and Control in Hybrid Fabrication. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15), ACM, NY, NY, USA, 2477--2486. http://doi.org/10.1145/2702123.2702547 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Jacob Fish and Ted Belytschko. 2007. A first course in finite elements. Wiley NY. Google ScholarGoogle ScholarCross RefCross Ref
  8. Ollé Gellért. Print To Build, 3D printed joint collection. Retrieved September 15, 2016 from https://www.behance.net/gallery/27812109/Print-ToBuild-3D-printed-joint-collectionGoogle ScholarGoogle Scholar
  9. Scott E. Hudson. 2014. Printing Teddy Bears. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '14), ACM, NY, NY, USA, 459--468. http://doi.org/10.1145/2556288.2557338 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Yuki Igarashi, Takeo Igarashi, and Jun Mitani. 2012. Beady: interactive beadwork design and construction. ACM Transactions on Graphics (TOG) 31, c: 49. http://doi.org/10.1145/2185520.2185545Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Sasa Jokic and Petar Novikov. Mataerial - A Radical New 3D Printing Method. Retrieved September 15, 2016 from http://www.mataerial.com/Google ScholarGoogle Scholar
  12. Sasa Jokic, Petr Novikov, Shihui Jin, Stuart Maggs, Cristina Nan, and Dori Sadan. Minibuilders: Robots for 3D printing in construction and design. Retrieved September 15, 2016 from http://robots.iaac.net/Google ScholarGoogle Scholar
  13. Behrokh Khoshnevis. 2004. Automated Construction by Contour Crafting-Related Robotics and Information Technologies. Automation in Construction 13, 1: 5--19. http://doi.org/10.1016/j.autcon.2003.08.012 Google ScholarGoogle ScholarCross RefCross Ref
  14. Benjamin Lafreniere, Marcelo H. Coelho, Nicholas Cote, Steven Li, Andy Nogueira, Long Nguyen, Tobias Schwinn, James Stoddart, David Thomasson, Ray Wang, Thomas White, Tovi Grossman, David Benjamin, Maurice Conti, Achim Menges, George Fitzmaurice, Fraser Anderson, Justin Matejka, Heather Kerrick, Danil Nagy, Lauren Vasey, Evan Atherton, and Nicholas Beirne. 2016. Crowdsourced Fabrication. In Proceedings of the 29th Annual ACM Symposium on User Interface Software & Technology (UIST '16), 15-- 28. http://doi.org/10.1145/2984511.2984553 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Tien T. Lan. 2005. Structural Engineering Handbook Space Frame Structures. CRC Press.Google ScholarGoogle Scholar
  16. Manfred Lau, Akira Ohgawara, Jun Mitani, and Takeo Igarashi. 2011. Converting 3D Furniture Models to Fabricatable Parts and Connectors. ACM Transactions on Graphics 30, 212: 1--6. http://doi.org/10.1145/1964921.1964980 Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. 2012. Chopper: Partitioning Models into 3D-Printable Parts. ACM Transactions on Graphics 31, 6: 1. http://doi.org/10.1145/2366145.2366148Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Michael Makris, David Gerber, Anders Carlson, and Doug Noble. 2013. Informing Design through Parametric Integrated Structural Simulation. In eCAADe 2013: Computation and Performance-- Proceedings of the 31st International Conference on Education and research in Computer Aided Architectural Design in Europe, Delft University of Technology, 69--77.Google ScholarGoogle Scholar
  19. Niloy J Mitra and Mark Pauly. 2009. Shadow art. ACM Transactions on Graphics 28, 5: 1. http://doi.org/10.1145/1618452.1618502Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Stefanie Mueller, Sangha Im, Serafima Gurevich, Alexander Teibrich, Lisa Pfisterer, François Guimbretière, and Patrick Baudisch. 2014. WirePrint: 3D Printed Previews for Fast Prototyping. In Proceedings of the 27th Annual ACM Symposium on User Interface Software & Technology (UIST '14), ACM, NY, NY, USA, 273--280. http://doi.org/10.1145/2642918.2647359 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Joseph Reuben Harry Otter, Alfred Carlo Cassell, and Roger Edwin Hobbs. 1966. Dynamic Relaxation. In Proceedings of the Institution of Civil Engineers 35, 4: 633--656. http://doi.org/10.1680/iicep.1966.8604 Google ScholarGoogle ScholarCross RefCross Ref
  22. Michael J. D. Powell. 1964. An Efficient Method for Finding the Minimum of a Function of Several Variables without Calculating Derivatives. The computer journal: 155--162. http://doi.org/10.1093/comjnl/7.2.155 Google ScholarGoogle ScholarCross RefCross Ref
  23. Clemens Preisinger. Karamba3D - Parametric Structural Modeling. Retrieved March 15, 2016 from http://www.karamba3d.com/Google ScholarGoogle Scholar
  24. Ronald Richter and Marc Alexa. 2015. Beam Meshes. Computers & Graphics, 1: 1--8. http://doi.org/10.1016/j.cag.2015.08.007 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. B. Roth. 1981. Rigid and Flexible Frameworks. Mathematical Association of America 88, 1: 6--21. Google ScholarGoogle ScholarCross RefCross Ref
  26. Greg Saul, Manfred Lau, Jun Mitani, and Takeo Igarashi. 2011. SketchChair: An All-in-one Chair Design System for End Users. In Proceedings of the fifth international conference on Tangible, embedded, and embodied interaction (TEI '11), ACM, NY, NY, USA, 73. http://doi.org/10.1145/1935701.1935717 Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Rita Shewbridge, Amy Hurst, and Shaun K. Kane. 2014. Everyday Making. In Proceedings of the 2014 conference on Designing interactive systems (DIS '14), ACM, NY, NY, USA, 815--824. http://doi.org/10.1145/2598510.2598544 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Melina Skouras, Stelian Coros, Eitan Grinspun, and Bernhard Thomaszewski. 2015. Interactive Surface Design with Interlocking Elements. ACM Transactions on Graphics 34, 6: 224. http://doi.org/10.1145/2816795.2818128Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Jeffrey Smith, Jessica Hodgins, Irving Oppenheim, and Andrew Witkin. 2002. Creating Models of Truss Structures with Optimization. ACM Transactions on Graphics. 21, 3: 295--301. http://doi.org/10.1145/566654.566580 Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Joshua G. Tanenbaum, Amanda M. Williams, Audrey Desjardins, and Karen Tanenbaum. 2013. Democratizing Technology: Pleasure, Utility and Expressiveness in DIY and Maker Practice. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '13): 2603--2612. http://doi.org/10.1145/2470654.2481360 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra. 2012. Guided exploration of physically valid shapes for furniture design. ACM Transactions on Graphics 31, 4: 1--11. http://doi.org/10.1145/2185520.2335437 Google ScholarGoogle ScholarCross RefCross Ref
  32. Weiming Wang, Tuanfeng Y. Wang, Zhouwang Yang, Ligang Liu, Xin Tong, Weihua Tong, Jiansong Deng, Falai Chen, and Xiuping Liu. 2013. Cost-effective Printing of 3D Objects with Skin-frame Structures. ACM Transactions on Graphics 32, 6: 1--10. http://doi.org/10.1145/2508363.2508382 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Christian Weichel, Manfred Lau, David Kim, Nicolas Villar, Hans W. Gellersen, Christian Weichel, Manfred Lau, David Kim, Nicolas Villar, and Hans W. Gellersen. 2014. MixFab: A Mixed-reality Environment for Personal Fabrication. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '14), 3855--3864. http://doi.org/10.1145/2556288.2557090 Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Karl Willis, Eric Brockmeyer, Scott Hudson, and Ivan Poupyrev. 2012. Printed Optics. In Proceedings of the 25th annual ACM symposium on User interface software and technology (UIST '12), 589. http://doi.org/10.1145/2380116.2380190 Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Jan Willmann, Federico Augugliaro, Thomas Cadalbert, Raffaello D'Andrea, Fabio Gramazio, and Matthias Kohler. 2012. Aerial Robotic Construction Towards a New Field of Architectural Research. International Journal of Architectural Computing 10, 3: 439--460. http://doi.org/10.1260/1478-0771.10.3.439 Google ScholarGoogle ScholarCross RefCross Ref
  36. Suguru Yamada, Hironao Morishige, Hiroki Nozaki, Masaki Ogawa, Takuro Yonezawa, and Hideyuki Tokuda. 2016. ReFabricator: Integrating Everyday Objects for Digital Fabrication. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA '16), ACM, NY, NY, USA, 3804--3807. http://doi.org/10.1145/2851581.2890237Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Hironori Yoshida, Syunsuke Igarashi, Takeo Igarashi, Yusuke Obuchi, Yosuke Takami, Jun Sato, Mika Araki, Masaaki Miki, Kosuke Nagata, Kazuhide Sakai, Kyungeun Sung, and Tim Cooper. 2015. Architecturescale Human-assisted Additive Manufacturing. ACM Transactions on Graphics 34, 4: 88:1--88:8. http://doi.org/10.1145/2766951Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Henrik Zimmer and Leif Kobbelt. 2014. Zometool Rationalization of Freeform Surfaces. IEEE Transactions on Visualization and Computer Graphics 20, 10: 1461--1473. http://doi.org/10.1109/TVCG.2014.2307885 Google ScholarGoogle ScholarCross RefCross Ref
  39. Homes Made from Plastic Bottles. Retrieved September 15, 2016 from http://www.inspirationgreen.com/plastic-bottle-homesGoogle ScholarGoogle Scholar
  40. Divergent3D: The World First 3D Printed Super Car. Retrieved September 15, 2016 from http://www.divergent3d.com/Google ScholarGoogle Scholar
  41. Trimble SketchUp. Retrieved March 15, 2016 from http://www.sketchup.com/Google ScholarGoogle Scholar
  42. SkyCiv cloud engineering software. Retrieved December 16, 2016 from https://skyciv.com/Google ScholarGoogle Scholar
  43. MiTek-PAMIR Software. Retrieved December 16, 2016 from http://www.mitek.co.uk/PAMIR/Google ScholarGoogle Scholar
  44. GlobalTruss TRUSSTOOL. Retrieved December 16, 2016 from https://trusstool.com/Google ScholarGoogle Scholar
  45. MeshLab. Retrieved December 16, 2016 from http://meshlab.sourceforge.netGoogle ScholarGoogle Scholar
  46. Autodesk - MeshMixer. Retrieved December 16, 2016 from http://meshmixer.comGoogle ScholarGoogle Scholar
  47. Open SCAD. Retrieved December 16, 2016 from http://openscad.orgGoogle ScholarGoogle Scholar

Index Terms

  1. TrussFab: Fabricating Sturdy Large-Scale Structures on Desktop 3D Printers

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '17: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
      May 2017
      7138 pages
      ISBN:9781450346559
      DOI:10.1145/3025453

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 2 May 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '17 Paper Acceptance Rate600of2,400submissions,25%Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader