skip to main content
10.1145/3038912.3052569acmotherconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article

Neural Collaborative Filtering

Authors Info & Claims
Published:03 April 2017Publication History

ABSTRACT

In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks on recommender systems has received relatively less scrutiny. In this work, we strive to develop techniques based on neural networks to tackle the key problem in recommendation --- collaborative filtering --- on the basis of implicit feedback.

Although some recent work has employed deep learning for recommendation, they primarily used it to model auxiliary information, such as textual descriptions of items and acoustic features of musics. When it comes to model the key factor in collaborative filtering --- the interaction between user and item features, they still resorted to matrix factorization and applied an inner product on the latent features of users and items.

By replacing the inner product with a neural architecture that can learn an arbitrary function from data, we present a general framework named NCF, short for Neural network-based Collaborative Filtering. NCF is generic and can express and generalize matrix factorization under its framework. To supercharge NCF modelling with non-linearities, we propose to leverage a multi-layer perceptron to learn the user-item interaction function. Extensive experiments on two real-world datasets show significant improvements of our proposed NCF framework over the state-of-the-art methods. Empirical evidence shows that using deeper layers of neural networks offers better recommendation performance.

References

  1. I. Bayer, X. He, B. Kanagal, and S. Rendle. A generic coordinate descent framework for learning from implicit feedback. In WWW, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating embeddings for modeling multi-relational data. In NIPS, pages 2787--2795, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. T. Chen, X. He, and M.-Y. Kan. Context-aware image tweet modelling and recommendation. In MM, pages 1018--1027, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir, et al. Wide & deep learning for recommender systems. arXiv preprint arXiv:1606.07792, 2016.Google ScholarGoogle Scholar
  5. R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. In ICML, pages 160--167, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. M. Elkahky, Y. Song, and X. He. A multi-view deep learning approach for cross domain user modeling in recommendation systems. In WWW, pages 278--288, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio. Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 11:625--660, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. X. Geng, H. Zhang, J. Bian, and T.-S. Chua. Learning image and user features for recommendation in social networks. In ICCV, pages 4274--4282, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In AISTATS, pages 315--323, 2011.Google ScholarGoogle Scholar
  10. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  11. X. He, T. Chen, M.-Y. Kan, and X. Chen. TriRank: Review-aware explainable recommendation by modeling aspects. In CIKM, pages 1661--1670, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. X. He, M. Gao, M.-Y. Kan, Y. Liu, and K. Sugiyama. Predicting the popularity of web 2.0 items based on user comments. In SIGIR, pages 233--242, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. X. He, M.-Y. Kan, P. Xie, and X. Chen. Comment-based multi-view clustering of web 2.0 items. In WWW, pages 771--782, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua. Fast matrix factorization for online recommendation with implicit feedback. In SIGIR, pages 549--558, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. R. Hong, Z. Hu, L. Liu, M. Wang, S. Yan, and Q. Tian. Understanding blooming human groups in social networks. IEEE Transactions on Multimedia, 17(11):1980--1988, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  16. R. Hong, Y. Yang, M. Wang, and X. S. Hua. Learning visual semantic relationships for efficient visual retrieval. IEEE Transactions on Big Data, 1(4):152--161, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  17. K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359--366, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. L. Hu, A. Sun, and Y. Liu. Your neighbors affect your ratings: On geographical neighborhood influence to rating prediction. In SIGIR, pages 345--354, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM, pages 263--272, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, pages 1--15, 2014.Google ScholarGoogle Scholar
  21. Y. Koren. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In KDD, pages 426--434, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Li, J. Kawale, and Y. Fu. Deep collaborative filtering via marginalized denoising auto-encoder. In CIKM, pages 811--820, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. D. Liang, L. Charlin, J. McInerney, and D. M. Blei. Modeling user exposure in recommendation. In WWW, pages 951--961, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A review of relational machine learning for knowledge graphs. Proceedings of the IEEE, 104:11--33, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  25. X. Ning and G. Karypis. Slim: Sparse linear methods for top-n recommender systems. In ICDM, pages 497--506, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. Rendle. Factorization machines. In ICDM, pages 995--1000, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In UAI, pages 452--461, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme. Fast context-aware recommendations with factorization machines. In SIGIR, pages 635--644, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS, pages 1--8, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for collaborative filtering. In ICDM, pages 791--798, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In WWW, pages 285--295, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. Sedhain, A. K. Menon, S. Sanner, and L. Xie. Autorec: Autoencoders meet collaborative filtering. In WWW, pages 111--112, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. R. Socher, D. Chen, C. D. Manning, and A. Ng. Reasoning with neural tensor networks for knowledge base completion. In NIPS, pages 926--934, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. N. Srivastava and R. R. Salakhutdinov. Multimodal learning with deep boltzmann machines. In NIPS, pages 2222--2230, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. F. Strub and J. Mary. Collaborative filtering with stacked denoising autoencoders and sparse inputs. In NIPS Workshop on Machine Learning for eCommerce, 2015.Google ScholarGoogle Scholar
  36. T. T. Truyen, D. Q. Phung, and S. Venkatesh. Ordinal boltzmann machines for collaborative filtering. In UAI, pages 548--556, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. A. Van den Oord, S. Dieleman, and B. Schrauwen. Deep content-based music recommendation. In NIPS, pages 2643--2651, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. H. Wang, N. Wang, and D.-Y. Yeung. Collaborative deep learning for recommender systems. In KDD, pages 1235--1244, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. M. Wang, W. Fu, S. Hao, D. Tao, and X. Wu. Scalable semi-supervised learning by efficient anchor graph regularization. IEEE Transactions on Knowledge and Data Engineering, 28(7):1864--1877, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  40. M. Wang, H. Li, D. Tao, K. Lu, and X. Wu. Multimodal graph-based reranking for web image search. IEEE Transactions on Image Processing, 21(11):4649--4661, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. Wang, X. Liu, and X. Wu. Visual classification by l1 hypergraph modeling. IEEE Transactions on Knowledge and Data Engineering, 27(9):2564--2574, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  42. X. Wang, L. Nie, X. Song, D. Zhang, and T.-S. Chua. Unifying virtual and physical worlds: Learning towards local and global consistency. ACM Transactions on Information Systems, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. X. Wang and Y. Wang. Improving content-based and hybrid music recommendation using deep learning. In MM, pages 627--636, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Y. Wu, C. DuBois, A. X. Zheng, and M. Ester. Collaborative denoising auto-encoders for top-n recommender systems. In WSDM, pages 153--162, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma. Collaborative knowledge base embedding for recommender systems. In KDD, pages 353--362, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. H. Zhang, F. Shen, W. Liu, X. He, H. Luan, and T.-S. Chua. Discrete collaborative filtering. In SIGIR, pages 325--334, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. H. Zhang, Y. Yang, H. Luan, S. Yang, and T.-S. Chua. Start from scratch: Towards automatically identifying, modeling, and naming visual attributes. In MM, pages 187--196, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Y. Zheng, B. Tang, W. Ding, and H. Zhou. A neural autoregressive approach to collaborative filtering. In ICML, pages 764--773, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Neural Collaborative Filtering

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader