skip to main content
10.1145/3038912.3052580acmotherconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article

Dynamic Key-Value Memory Networks for Knowledge Tracing

Authors Info & Claims
Published:03 April 2017Publication History

ABSTRACT

Knowledge Tracing (KT) is a task of tracing evolving knowledge state of students with respect to one or more concepts as they engage in a sequence of learning activities. One important purpose of KT is to personalize the practice sequence to help students learn knowledge concepts efficiently. However, existing methods such as Bayesian Knowledge Tracing and Deep Knowledge Tracing either model knowledge state for each predefined concept separately or fail to pinpoint exactly which concepts a student is good at or unfamiliar with. To solve these problems, this work introduces a new model called Dynamic Key-Value Memory Networks (DKVMN) that can exploit the relationships between underlying concepts and directly output a student's mastery level of each concept. Unlike standard memory-augmented neural networks that facilitate a single memory matrix or two static memory matrices, our model has one static matrix called key, which stores the knowledge concepts and the other dynamic matrix called value, which stores and updates the mastery levels of corresponding concepts. Experiments show that our model consistently outperforms the state-of-the-art model in a range of KT datasets. Moreover, the DKVMN model can automatically discover underlying concepts of exercises typically performed by human annotations and depict the changing knowledge state of a student.

References

  1. A. Bordes, N. Usunier, S. Chopra, and J. Weston. Large-scale simple question answering with memory networks. arXiv preprint arXiv:1506.02075, 2015.Google ScholarGoogle Scholar
  2. T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. In In Neural Information Processing Systems, Workshop on Machine Learning Systems, 2015.Google ScholarGoogle Scholar
  3. A. T. Corbett and J. R. Anderson. Knowledge tracing: Modeling the acquisition of procedural knowledge. volume 4, pages 253--278. Springer, 1994.Google ScholarGoogle Scholar
  4. R. S. d Baker, A. T. Corbett, and V. Aleven. More accurate student modeling through contextual estimation of slip and guess probabilities in bayesian knowledge tracing. In International Conference on Intelligent Tutoring Systems, pages 406--415. Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Feng, N. Heffernan, and K. Koedinger. Addressing the assessment challenge with an online system that tutors as it assesses. User Modeling and User-Adapted Interaction, 19(3):243--266, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401, 2014.Google ScholarGoogle Scholar
  7. A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):471--476, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  8. E. Grefenstette, K. M. Hermann, M. Suleyman, and P. Blunsom. Learning to transduce with unbounded memory. In Advances in Neural Information Processing Systems, pages 1828--1836, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735--1780, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. Joulin and T. Mikolov. Inferring algorithmic patterns with stack-augmented recurrent nets. In Advances in Neural Information Processing Systems, pages 190--198, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Khajah, R. V. Lindsey, and M. C. Mozer. How deep is knowledge tracing? In Educational Data Mining 2016, 2016.Google ScholarGoogle Scholar
  12. K. R. Koedinger, R. S. Baker, K. Cunningham, A. Skogsholm, B. Leber, and J. Stamper. A data repository for the edm community: The pslc datashop. Handbook of educational data mining, 43, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  13. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, pages 1097--1105, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436--444, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  15. L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine Learning Research, 9(11):2579--2605, 2008.Google ScholarGoogle Scholar
  16. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems, pages 3111--3119, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston. Key-value memory networks for directly reading documents. arXiv preprint arXiv:1606.03126, 2016.Google ScholarGoogle Scholar
  18. G. B. Orr and K.-R. Müller. Neural networks: tricks of the trade. Springer, 2003.Google ScholarGoogle Scholar
  19. Z. A. Pardos and N. T. Heffernan. Modeling individualization in a bayesian networks implementation of knowledge tracing. In User Modeling, Adaptation, and Personalization, pages 255--266. Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Z. A. Pardos and N. T. Heffernan. Kt-idem: Introducing item difficulty to the knowledge tracing model. In User Modeling, Adaption and Personalization, pages 243--254. Springer, 2011. Google ScholarGoogle ScholarCross RefCross Ref
  21. R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In Proceedings of The 30th International Conference on Machine Learning, pages 1310--1318, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami, L. J. Guibas, and J. Sohl-Dickstein. Deep knowledge tracing. In Advances in Neural Information Processing Systems, pages 505--513, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. Reye. Student modelling based on belief networks. International Journal of Artificial Intelligence in Education, 14(1):63--96, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with memory-augmented neural networks. In Proceedings of The 33rd International Conference on Machine Learning, pages 1842--1850, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85--117, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. Steif and N. Bier. Oli engineering statics - fall 2011. Feb. 2014.Google ScholarGoogle Scholar
  27. S. Sukhbaatar, J. Weston, R. Fergus, et al. End-to-end memory networks. In Advances in neural information processing systems, pages 2440--2448, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot learning. In Advances in Neural Information Processing Systems, pages 3630--3638, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. P. Viola and W. M. Wells III. Alignment by maximization of mutual information. International Journal of Computer Vision, 24(2):137--154, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Weston, S. Chopra, and A. Bordes. Memory networks. International Conference on Learning Representations, 2015.Google ScholarGoogle Scholar
  31. K. H. Wilson, X. Xiong, M. Khajah, R. V. Lindsey, S. Zhao, Y. Karklin, E. G. Van Inwegen, B. Han, C. Ekanadham, J. E. Beck, et al. Estimating student proficiency: Deep learning is not the panacea. In In Neural Information Processing Systems, Workshop on Machine Learning for Education, 2016.Google ScholarGoogle Scholar
  32. X. Xiong, S. Zhao, E. G. Van Inwegen, and J. E. Beck. Going deeper with deep knowledge tracing. In Educational Data Mining 2016, 2016.Google ScholarGoogle Scholar
  33. M. V. Yudelson, K. R. Koedinger, and G. J. Gordon. Individualized bayesian knowledge tracing models. In Artificial intelligence in education, pages 171--180. Springer, 2013.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Dynamic Key-Value Memory Networks for Knowledge Tracing

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader