skip to main content
10.1145/3052973.3052983acmconferencesArticle/Chapter ViewAbstractPublication Pagesasia-ccsConference Proceedingsconference-collections
research-article
Public Access

DataShield: Configurable Data Confidentiality and Integrity

Published:02 April 2017Publication History

ABSTRACT

Applications written in C/C++ are prone to memory corruption, which allows attackers to extract secrets or gain control of the system. With the rise of strong control-flow hijacking defenses, non-control data attacks have become the dominant threat. As vulnerabilities like HeartBleed have shown, such attacks are equally devastating. Data Confidentiality and Integrity (DCI) is a low-overhead non-control-data protection mechanism for systems software. DCI augments the C/C++ programming languages with an- notations, allowing the programmer to protect selected data types. The DCI compiler and runtime system prevent illegal reads (confidentiality) and writes (integrity) to instances of these types. The programmer selects types that contain security critical information such as passwords, cryptographic keys, or identification tokens. Protecting only this critical data greatly reduces performance overhead relative to complete memory safety.

Our prototype implementation of DCI, DataShield, shows the applicability and efficiency of our approach. For SPEC CPU2006, the performance overhead is at most 16.34%. For our case studies, we instrumented mbedTLS, astar, and libquantum to show that our annotation approach is practical. The overhead of our SSL/TLS server is 35.7% with critical data structures protected at all times. Our security evaluation shows DataShield mitigates a recently discovered vulnerability in mbedTLS.

References

  1. M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow Integrity. CCS 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. P. Akritidis. Cling: A Memory Allocator to Mitigate Dangling Pointers. USENIX Security 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing Memory Error Exploits with WIT. In S&P 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy Bounds Checking: An Efficient and Backwards-Compatible Defense Against Out-of-Bounds Errors. In USENIX Security 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. E. D. Berger and B. G. Zorn. DieHard: Probabilistic Memory Safety for Unsafe Languages. PLDI 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented programming: a new class of code-reuse attack. In ASIACCS '11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and M. Payer. Control-Flow Integrity: Protection, Security, and Performance. In CSUR, 2017.Google ScholarGoogle Scholar
  8. N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross. Control-Flow Bending: On the Effectiveness of Control-Flow Integrity. In USENIX Security 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-control-data Attacks Are Realistic Threats. SSYM 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Y. Chen, S. Reymondjohnson, Z. sun, and L. Lu. Shreds: Fine-grained Execution Units with Private Memory. In S&P 2016.Google ScholarGoogle Scholar
  11. P. Collingbourne. LLVM -- Control Flow Integrity, 2015. http://clang.llvm.org/docs/ControlFlowIntegrity.html.Google ScholarGoogle Scholar
  12. C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang. StackGuard: Automatic adaptive detection and prevention of buffer-overflow attacks. In USENIX Security 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang. StackGuard: Automatic Adaptive Detection and Prevention of Buffer-overflow Attacks. SSYM 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic. Hardbound: Architectural Support for Spatial Safety of the C Programming Language. ASPLOS XIII (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. D. Dhurjati, S. Kowshik, and V. Adve. SAFECode: Enforcing Alias Analysis for Weakly Typed Languages. PLDI 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver, D. Adrian, V. Paxson, M. Bailey, and J. A. Halderman. The Matter of Heartbleed. In IMC 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. H.-C. Estler, C. Furia, M. Nordio, M. Piccioni, and B. Meyer. Contracts in Practice. In FM 2014: Formal Methods. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang, H. Shrobe, S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi. Missing the Point: On the Effectiveness of Code Pointer Integrity. In S&P 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi, and S. Sidiroglou-Douskos. Control Jujutsu: On the Weaknesses of Fine-Grained Control Flow Integrity. In CCS 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi, and S. Sidiroglou-Douskos. Control Jujutsu: On the Weaknesses of fine-grained Control Flow Integrity. 2015.Google ScholarGoogle Scholar
  21. E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out Of Control: Overcoming Control-Flow Integrity. In S&P 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. I. Haller, E. van der Kouwe, C. Giuffrida, and H. Bos. METAlloc: Efficient and Comprehensive Metadata Management for Software Security Hardening. EuroSec 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Hicks. What is memory safety. http://www.pl-enthusiast.net/2014/07/21/memory-safety/.Google ScholarGoogle Scholar
  24. H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang. Data-Oriented Programming: On the Expressiveness of Non-control Data Attacks. In 2016 IEEE Symposium on Security and Privacy (SP), pages 969--986, May 2016.Google ScholarGoogle ScholarCross RefCross Ref
  25. D. Jang, Z. Tatlock, and S. Lerner. SAFEDISPATCH: Securing CGoogle ScholarGoogle Scholar
  26. virtual calls from memory corruption attacks. In NDSS 2014.Google ScholarGoogle Scholar
  27. T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang. Cyclone: A Safe Dialect of C. ATEC 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. Code-Pointer Integrity. In OSDI 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. McCamant and G. Morrisett. Evaluating SFI for a CISC Architecture. In USENIX Security 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Microsoft Corporation. Control Flow Guard (Windows). https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx, 2016.Google ScholarGoogle Scholar
  31. S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Everything You Want to Know About Pointer-Based Checking. In SNAPL 2015.Google ScholarGoogle Scholar
  32. S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Watchdog: Hardware for Safe and Secure Manual Memory Management and Full Memory Safety. ISCA 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. WatchdogLite: Hardware-Accelerated Compiler-Based Pointer Checking. CGO 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. CETS: Compiler Enforced Temporal Safety for C. ISMM 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. SoftBound: Highly Compatible and Complete Spatial Memory Safety for C. PLDI 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. CCured: Type-safe Retrofitting of Legacy Software. ACM Trans. Program. Lang. Syst. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Nergal. The advanced return-into-lib(c) exploits. Phrack, 11(58):http://phrack.com/issues.html?issue=67&id=8, Nov. 2007.Google ScholarGoogle Scholar
  38. B. Niu and G. Tan. Modular Control-flow Integrity. PLDI 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. B. Niu and G. Tan. Monitor Integrity Protection with Space Efficiency and Separate Compilation. CCS 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. B. Niu and G. Tan. Per-Input Control-Flow Integrity. CCS 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. B. Niu and G. Tan. RockJIT: Securing Just-In-Time Compilation Using Modular Control-Flow Integrity. CCS 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. G. Novark and E. D. Berger. DieHarder: Securing the Heap. CCS 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and C. Giuffrida. Poking Holes in Information Hiding. In USENIX Security 2016).Google ScholarGoogle Scholar
  44. K. Pattabiraman, V. Grover, and B. G. Zorn. Samurai: Protecting Critical Data in Unsafe Languages. Eurosys 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. PaX-Team. PaX ASLR. http://pax.grsecurity.net/docs/aslr.txt, 2003.Google ScholarGoogle Scholar
  46. M. Payer, A. Barresi, and T. R. Gross. Fine-Grained Control-Flow Integrity Through Binary Hardening. In DIMVA 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. T. W. Schiller, K. Donohue, F. Coward, and M. D. Ernst. Case Studies and Tools for Contract Specifications. ICSE 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. C. Schlesinger, K. Pattabiraman, N. Swamy, D. Walker, and B. Zorn. Modular Protections against Non-Control Data Attacks. In CSF 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz. Counterfeit Object-oriented Programming: On the Difficulty of Preventing Code Reuse Attacks in CGoogle ScholarGoogle Scholar
  50. Applications. In S&P 2015.Google ScholarGoogle Scholar
  51. C. Song, B. Lee, K. Lu, W. R. Harris, T. Kim, and W. Lee. Enforcing Kernel Security Invariants with Data Flow Integrity. In NDSS 2016.Google ScholarGoogle Scholar
  52. L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal War in Memory. S&P 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano, and G. Pike. Enforcing Forward-Edge Control-Flow Integrity in GCC & LLVM. In USENIX Security 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. A. van de Ven and I. Molnar. Exec Shield. https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf, 2004.Google ScholarGoogle Scholar
  55. V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc, A. Slowinska, H. Bos, and C. Giuffrida. Practical Context-Sensitive CFI. CCS 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. G. Vranken. CVE-2015--5291: remote heap corruption in ARM mbed TLS / PolarSSL, October 2015.Google ScholarGoogle Scholar
  57. J. Wagner, V. Kuznetsov, G. Candea, and J. Kinder. High System-Code Security with Low Overhead. In S&P 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar. Native Client: A Sandbox for Portable, Untrusted x86 Native Code. In S&P 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens, and W. Joosen. PAriCheck: An Efficient Pointer Arithmetic Checker for C Programs. ASIACCS 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. DataShield: Configurable Data Confidentiality and Integrity

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        ASIA CCS '17: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security
        April 2017
        952 pages
        ISBN:9781450349444
        DOI:10.1145/3052973

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 2 April 2017

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        ASIA CCS '17 Paper Acceptance Rate67of359submissions,19%Overall Acceptance Rate418of2,322submissions,18%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader