skip to main content
survey

Spatio-Temporal Analysis of Team Sports

Authors Info & Claims
Published:11 April 2017Publication History
Skip Abstract Section

Abstract

Team-based invasion sports such as football, basketball, and hockey are similar in the sense that the players are able to move freely around the playing area and that player and team performance cannot be fully analysed without considering the movements and interactions of all players as a group. State-of-the-art object tracking systems now produce spatio-temporal traces of player trajectories with high definition and high frequency, and this, in turn, has facilitated a variety of research efforts, across many disciplines, to extract insight from the trajectories. We survey recent research efforts that use spatio-temporal data from team sports as input and involve non-trivial computation. This article categorises the research efforts in a coherent framework and identifies a number of open research questions.

References

  1. Prasad Balkundi and David A. Harrison. 2006. Ties, leaders, and time in teams: Strong inference about network structure’s effects on team viability and performance. Acad. Manag. J. 49, 1 (Feb 2006), 49--68.Google ScholarGoogle ScholarCross RefCross Ref
  2. Alex Bavelas. 1950. Communication patterns in task-oriented groups. J. Acoust. Soc. Am. 22, 6 (1950), 725--730.Google ScholarGoogle ScholarCross RefCross Ref
  3. Michael Beetz, Nicolai von Hoyningen-Huene, Bernhard Kirchlechner, Suat Gedikli, Francisco Siles, Murat Durus, and Martin Lames. 2009. ASPOGAMO: Automated sports games analysis models. Int. J. Comput. Sci. Sport 8, 1 (2009), 1--21.Google ScholarGoogle Scholar
  4. Alina Bialkowski, Patrick Lucey, G. Peter K. Carr, Yisong Yue, and Iain Matthews. 2014a. Win at home and draw away: Automatic formation analysis highlighting the differences in home and away team behaviors. In Proceedings of the 8th Annual MIT Sloan Sports Analytics Conference. MIT, Boston, MA, 1--7.Google ScholarGoogle Scholar
  5. Alina Bialkowski, Patrick Lucey, G. Peter K. Carr, Yisong Yue, Sridha Sridharan, and Iain Matthews. 2014b. Identifying team style in soccer using formations learned from spatiotemporal tracking data. In Proceedings of the 2014 IEEE International Conference on Data Mining Workshops, ICDM Workshops. IEEE, 9--14.Google ScholarGoogle ScholarCross RefCross Ref
  6. Alina Bialkowski, Patrick Lucey, Peter Carr, Yisong Yue, Sridha Sridharan, and Iain Matthews. 2014c. Large-scale analysis of soccer matches using spatiotemporal tracking data. In Proceedings of the 2014 IEEE International Conference on Data Mining (ICDM’14). IEEE, 725--730. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent dirichlet allocation. J. Mach. Learn. Res. 3 (Mar. 2003), 993--1022. Google ScholarGoogle Scholar
  8. Stephen P. Borgatti. 2005. Centrality and network flow. Soc. Netw. 27, 1 (Jan. 2005), 55--71.Google ScholarGoogle ScholarCross RefCross Ref
  9. Andrew Borrie, Gudberg K. Jonsson, and Magnus S. Magnusson. 2002. Temporal pattern analysis and its applicability in sport: An explanation and exemplar data. J. Sports Sci. 20, 10 (2002), 845--52.Google ScholarGoogle ScholarCross RefCross Ref
  10. Jérôme Bourbousson, Carole Sève, and Tim McGarry. 2010a. Space-time coordination dynamics in basketball: Part 2. The interaction between the two teams. J. Sports Sci. 28, 3 (Feb. 2010), 349--58.Google ScholarGoogle Scholar
  11. Jérôme Bourbousson, Carole Sève, and Tim McGarry. 2010b. Space-time coordination dynamics in basketball: Part 1. Intra- and inter-couplings among player dyads. J. Sports Sci. 28, 3 (Feb. 2010), 339--347.Google ScholarGoogle Scholar
  12. Paul Bradley, Peter O’Donoghue, Blake Wooster, and Phil Tordoff. 2007. The reliability of ProZone MatchViewer: A video-based technical performance analysis system. Int. J. Perf. Anal. Sport 7, 3 (2007), 117--129.Google ScholarGoogle ScholarCross RefCross Ref
  13. Dietrich Braess, Anna Nagurney, and Tina Wakolbinger. 2005. On a paradox of traffic planning. Transport. Sci. 39, 4 (Nov. 2005), 446--450. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst. 30, 1--7 (Apr. 1998), 107--117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Oleguer Foguet Camerino, Javier Chaverri, M. Teresa Anguera, and Gudberg K. Jonsson. 2012. Dynamics of the game in soccer: Detection of t-patterns. Eur. J. Sport Sci. 12, 3 (May 2012), 216--224.Google ScholarGoogle ScholarCross RefCross Ref
  16. Catapult Sports Ltd. 2015. Catapult USA—Wearable Technology for Elite Sports. Retrieved from http://www.catapultsports.com/.Google ScholarGoogle Scholar
  17. Daniel Cervone, Alex D’Amour, Luke Bornn, and Kirk Goldsberry. 2014. A multiresolution stochastic process model for predicting basketball possession outcomes. CoRR 1, 1 (Aug 2014), 1--30. arXiv:1408.0777Google ScholarGoogle Scholar
  18. Yu-Han Chang, Rajiv Maheswaran, Jeff Su, Sheldon Kwok, Tal Levy, Adam Wexler, and Kevin Squire. 2014. Quantifying shot quality in the NBA. In Proceedings of the 8th Annual MIT Sloan Sports Analytics Conference. MIT, Boston, MA, 1--8.Google ScholarGoogle Scholar
  19. ChyronHego Corporation. 2015. Tracab Player Tracking System. Retrieved from http://chyronhego.com/sports-data/player-tracking.Google ScholarGoogle Scholar
  20. Paolo Cintia, Fosca Giannotti, Luca Pappalardo, Dino Pedreschi, and Marco Malvaldi. 2015. The harsh rule of the goals: Data-driven performance indicators for football teams. In Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  21. Filipe Manuel Clemente, Micael Santos Couceiro, Fernando Manuel Lourenço Martins, and Rui Sousa Mendes. 2014. Using network metrics to investigate football team players’ connections: A pilot study. Motriz: Rev. Educ. Fís. 20, 3 (Sep. 2014), 262--271.Google ScholarGoogle Scholar
  22. Filipe Manuel Clemente, Micael Santos Couceiro, Fernando Manuel Lourenço Martins, and Rui Sousa Mendes. 2015. Using network metrics in soccer: A macro-analysis. J. Hum. Kinet. 45, (Mar. 2015), 123--134.Google ScholarGoogle ScholarCross RefCross Ref
  23. Filipe Manuel Clemente, Fernando Manuel, Lourenço Martins, Micael Santos Couceiro, Rui Sousa Mendes, and António José Figueiredo. 2014a. A network approach to characterize the teammates’ interactions on football: A single match analysis. Cuad. Psicol. Deporte 14, 3 (2014), 141--148.Google ScholarGoogle ScholarCross RefCross Ref
  24. Filipe Manuel Clemente, Fernando Manuel Lourenço Martins, Micael Santos Couceiro, Rui Sousa Mendes, and António José Figueiredo. 2014b. Inspecting teammates’ coverage during attacking plays in a football game : A case study. Int. J. Perf. Anal. Sport 14, 2 (2014), 384--400.Google ScholarGoogle Scholar
  25. Filipe Manuel Clemente, Fernando Manuel Lourenço Martins, Dimitris Kalamaras, Joana Oliveira, Patrícia Oliveira, and Rui Sousa Mendes. 2015a. The social network analysis of switzerland football team on FIFA world cup 2014. Acta Kinesiol. 9 (2015), 25--30.Google ScholarGoogle Scholar
  26. Filipe Manuel Clemente, Frutuoso Silva, Fernando Manuel Lourenço Martins, Dimitris Kalamaras, and Rui Sousa Mendes. 2015b. Performance analysis tool for network analysis on team sports: A case study of FIFA soccer world cup 2014. Proc. Inst. Mech. Eng. P: J. Sports Eng. Technol. 229, 3 (Jul. 2015), 1--13.Google ScholarGoogle Scholar
  27. Carlos Cotta, Antonio M. Mora, Juan Julián Merelo, and Cecilia Merelo-Molina. 2013. A network analysis of the 2010 FIFA world cup champion team play. J. Syst. Sci. Complex. 26 (2013), 21--42.Google ScholarGoogle ScholarCross RefCross Ref
  28. Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Method.) 39, 1 (1977), 1--38. http://www.jstor.org/stable/2984875Google ScholarGoogle ScholarCross RefCross Ref
  29. Jordi Duch, Joshua S. Waitzman, and Luís A. Nunes Amaral. 2010. Quantifying the performance of individual players in a team activity. PLoS ONE 5, 6 (Jun. 2010), e10937.Google ScholarGoogle ScholarCross RefCross Ref
  30. Jennifer H. Fewell, Dieter Armbruster, John Ingraham, Alexander Petersen, and James S. Waters. 2012. Basketball teams as strategic networks. PLoS ONE 7, 11 (Nov. 2012), e47445.Google ScholarGoogle ScholarCross RefCross Ref
  31. Sofia Fonseca, João Milho, Bruno Travassos, and Duarte Araújo. 2012. Spatial dynamics of team sports exposed by voronoi diagrams. Hum. Mov. Sci. 31, 6 (2012), 1652--1659.Google ScholarGoogle ScholarCross RefCross Ref
  32. Steven Fortune. 1987. A sweepline algorithm for voronoi diagrams. Algorithmica 2 (1987), 153--174.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Alexander Franks, Andrew Miller, Luke Bornn, and Kirk Goldsberry. 2015a. Characterizing the spatial structure of defensive skill in professional basketball. Ann. Appl. Stat. 9, 1 (Mar. 2015), 94--121.Google ScholarGoogle ScholarCross RefCross Ref
  34. Alexander Franks, Andrew Miller, Luke Bornn, and Kirk Goldsberry. 2015b. Counterpoints: Advanced defensive metrics for NBA basketball. In Proceedings of the 9th Annual MIT Sloan Sports Analytics Conference. MIT, Boston, MA, 1--8.Google ScholarGoogle Scholar
  35. Ian M. Franks and Gary Miller. 1986. Eyewitness testimony in sport. J. Sport Behav. 9, 1 (1986), 38--45.Google ScholarGoogle Scholar
  36. Linton C. Freeman. 1977. A set of measures of centrality based on betweenness. Sociometry 40, 1 (Mar. 1977), 35--41.Google ScholarGoogle ScholarCross RefCross Ref
  37. Linton C. Freeman. 1978. Centrality in social networks conceptual clarification. Soc. Netw. 1, 3 (Jan. 1978), 215--239.Google ScholarGoogle ScholarCross RefCross Ref
  38. Wouter Frencken, Koen Lemmink, Nico Delleman, and Chris Visscher. 2011. Oscillations of centroid position and surface area of soccer teams in small-sided games. Eur. J. Sport Sci. 11, 4 (Jul 2011), 215--223.Google ScholarGoogle ScholarCross RefCross Ref
  39. Akira Fujimura and Kokichi Sugihara. 2005. Geometric analysis and quantitative evaluation of sport teamwork. Syst. Comput. Jpn. 36, 6 (2005), 49--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Kirk Goldsberry. 2012. Courtvision: New visual and spatial analytics for the NBA. In Proceedings of the 6th Annual MIT Sloan Sports Analytics Conference. MIT, Boston, MA, 1--7.Google ScholarGoogle Scholar
  41. Kirk Goldsberry and Eric Weiss. 2013. The dwight effect : A new ensemble of interior defense analytics for the NBA. In Proceedings of the 7th Annual MIT Sloan Sports Analytics Conference. MIT, Boston, MA, 1--11.Google ScholarGoogle Scholar
  42. Peter Gould and Anthony Gatrell. 1979. A structural analysis of a game: The liverpool v manchester united cup final of 1977. Soc. Netw. 2, 3 (Jan. 1979), 253--273.Google ScholarGoogle ScholarCross RefCross Ref
  43. Thomas U. Grund. 2012. Network structure and team performance: The case of english premier league soccer teams. Soc. Netw. 34, 4 (2012), 682--690.Google ScholarGoogle ScholarCross RefCross Ref
  44. Joachim Gudmundsson and Thomas Wolle. 2014. Football analysis using spatio-temporal tools. Comput. Environ. Urban Syst. 47 (2014), 16--27.Google ScholarGoogle ScholarCross RefCross Ref
  45. Hermann Haken, J. A. Scott Kelso, and H. Bunz. 1985. A theoretical model of phase transitions in human hand movements. Biol. Cybernet. 51, 5 (Feb. 1985), 347--356.Google ScholarGoogle ScholarCross RefCross Ref
  46. Alexandre Hervieu and Patrick Bouthemy. 2011. Understanding sports video using players trajectories. In Intelligent Video Event Analysis and Understanding, Jianguo Zhang, Ling Shao, Lei Zhang, and Graeme A. Jones (Eds.). Studies in Computational Intelligence, Vol. 332. Springer, Berlin, Berlin, Heidelberg, 125--153.Google ScholarGoogle Scholar
  47. Alexandre Hervieu, Patrick Bouthemy, and Jean-Pierre Le Cadre. 2009. Trajectory-based handball video understanding. In Proceeding of the ACM International Conference on Image and Video Retrieval (CIVR’09). ACM Press, New York, NY, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Michael Horton, Joachim Gudmundsson, Sanjay Chawla, and Joël Estephan. 2015. Automated classification of passing in football. In Proceedings of the Advances in Knowledge Discovery and Data Mining - 19th Pacific-Asia Conference (PAKDD’15), Part II, Lecture Notes in Computer Science, Vol. 9078. Springer, 319--330.Google ScholarGoogle ScholarCross RefCross Ref
  49. Impire A. G. 2015. Impire AG. (2015). Retrieved from http://www.bundesliga-datenbank.de/en/products/.Google ScholarGoogle Scholar
  50. Stephen S. Intille and Aaron F. Bobick. 1999. A framework for recognizing multi-agent action from visual evidence. In Proceedings of the 16th National Conference on Artificial Intelligence and the Eleventh Innovative Applications of Artificial Intelligence Conference Innovative Applications of Artificial Intelligence. American Association for Artificial Intelligence, Orlando, FL, 518--525. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Halldór Janetzko, Dominik Sacha, Manuel Stein, Tobias Schreck, Daniel A. Keim, and Oliver Deussen. 2014. Feature-driven visual analytics of soccer data. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (VAST’14). IEEE, Paris, 13--22.Google ScholarGoogle ScholarCross RefCross Ref
  52. Kihwan Kim, Matthias Grundmann, Ariel Shamir, Iain Matthews, Jessica Hodgins, and Irfan Essa. 2010. Motion fields to predict play evolution in dynamic sport scenes. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 840--847.Google ScholarGoogle ScholarCross RefCross Ref
  53. Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa. 1997. RoboCup. In Proceedings of the 1st International Conference on Autonomous Agents (AGENTS’97). ACM Press, New York, NY, 340--347. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Justin Kubatko, Dean Oliver, Kevin Pelton, and Dan T. Rosenbaum. 2007. A starting point for analyzing basketball statistics. J. Quant. Anal. Sports 3, 3 (Jan. 2007), 1--22.Google ScholarGoogle Scholar
  55. Harold W. Kuhn. 1955. The hungarian method for the assignment problem. Nav. Res. Logist. Quart. 2, 1--2 (Mar. 1955), 83--97.Google ScholarGoogle ScholarCross RefCross Ref
  56. David Lamoreaux. 1977. Baseball in the late nineteenth century: The source of its appeal. J. Pop. Cult. 11, 3 (Dec. 1977), 597--613.Google ScholarGoogle ScholarCross RefCross Ref
  57. Ruonan Li and Rama Chellappa. 2010. Group motion segmentation using a spatio-temporal driving force model. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2038--2045.Google ScholarGoogle ScholarCross RefCross Ref
  58. Ruonan Li, Rama Chellappa, and Shaohua Kevin Zhou. 2009. Learning multi-modal densities on discriminative temporal interaction manifold for group activity recognition. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2450--2457.Google ScholarGoogle Scholar
  59. Patrick Lucey, Alina Bialkowski, G. Peter K. Carr, Eric Foote, and Iain Matthews. 2012. Characterizing multi-agent team behavior from partial team tracings: Evidence from the english premier league. In Proceedings of the 26th AAAI Conference on Artificial Intelligence. AAAI Press, Toronto, 1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Patrick Lucey, Alina Bialkowski, G. Peter K. Carr, Stuart Morgan, Iain Matthews, and Yaser Sheikh. 2013. Representing and Discovering Adversarial Team Behaviors Using Player Roles. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’13). IEEE, 2706--2713. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Patrick Lucey, Alina Bialkowski, G. Peter K. Carr, Yisong Yue, and Iain Matthews. 2014a. “How to get an open shot”: Analyzing team movement in basketball using tracking data. In Proceedings of the 8th Annual MIT Sloan Sports Analytics Conference Conference. MIT, Boston, MA, 1--10.Google ScholarGoogle Scholar
  62. Patrick Lucey, Alina Bialkowski, Mathew Monfort, Peter Carr, and Iain Matthews. 2014b. “Quality vs quantity”: Improved shot prediction in soccer using strategic features from spatiotemporal data. In Proceedings of the 8th Annual MIT Sloan Sports Analytics Conference. MIT, Boston, MA, 1--9.Google ScholarGoogle Scholar
  63. Rajiv Maheswaran, Yu-Han Chang, Aaron Henehan, and Samantha Danesis. 2012. Deconstructing the rebound with optical tracking data. In Proceedings of the 6th Annual MIT Sloan Sports Analytics Conference. MIT, Boston, MA, USA, 1--7.Google ScholarGoogle Scholar
  64. Rajiv Maheswaran, Yu-Han Chang, Jeff Su, Sheldon Kwok, Tal Levy, Adam Wexler, and Noel Hollingsworth. 2014. The three dimensions of rebounding. In Proceedings of the 8th Annual MIT Sloan Sports Analytics Conference. MIT, Boston, MA, USA, 1--7.Google ScholarGoogle Scholar
  65. Andrew Miller, Luke Bornn, Ryan P. Adams, and Kirk Goldsberry. 2014. Factorized point process intensities: A spatial analysis of professional basketball. In Proceedings of the 31th International Conference on Machine Learning (ICML’2014). JMLR.org, Beijing, 235--243. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Ryota Nakanishi, Junya Maeno, Kazuhito Murakami, and Tadashi Naruse. 2009. An approximate computation of the dominant region diagram for the real-time analysis of group behaviors. In Proceedings of the 13th Annual RoboCup International Symposium. Springer, 228--239.Google ScholarGoogle Scholar
  67. Takuma Narizuka, Ken Yamamoto, and Yoshihiro Yamazaki. 2014. Statistical properties of position-dependent ball-passing networks in football games. Physica A 412 (Oct. 2014), 157--168.Google ScholarGoogle Scholar
  68. NBA Media Ventures LLC. 2014. NBA Stats. Retrieved from http://stats.nba.com/featured/whole_new_view_2013_10_29.html.Google ScholarGoogle Scholar
  69. Mark E. J. Newman. 2010. Networks: An introduction. Oxford University Press, New York, NY. Google ScholarGoogle ScholarCross RefCross Ref
  70. Opta Sports Ltd. 2015. Opta Live Performance Data. Retrieved from http://www.optasports.com/about/what-we-do/live-performance-data.aspx.Google ScholarGoogle Scholar
  71. Pedro Passos, Keith Davids, Duarte Araújo, N. Paz, J. Minguéns, and J. Mendes. 2011. Networks as a novel tool for studying team ball sports as complex social systems. J. Sci. Med. Sport 14, 2 (Mar. 2011), 170--176.Google ScholarGoogle ScholarCross RefCross Ref
  72. Javier Lopez Peña and Hugo Touchette. 2012. A network theory analysis of football strategies. In Proc. 2012 Euromech Physics of Sports Conference. LÉditions de l’École Polytechnique, Paris, 517--528. arXiv:1206.6904 http://arxiv.org/abs/1206.6904Google ScholarGoogle Scholar
  73. Charles Perin, Romain Vuillemot, and Jean-Daniel Fekete. 2013. SoccerStories: A kick-off for visual soccer analysis. IEEE Trans. Vis. Comput. Graph. 19, 12 (2013), 2506--2515. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Matej Perše, Matej Kristan, Stanislav Kovačič, Goran Vučkovič, and Janez Perš. 2009. A trajectory-based analysis of coordinated team activity in a basketball game. Comput. Vis. Image Understand. 113, 5 (May 2009), 612--621. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Hannah Pileggi, Charles D. Stolper, J. Michael Boyle, and John T. Stasko. 2012. SnapShot: Visualization to propel ice hockey analytics. IEEE Trans. Visu. Comput. Graph. 18, 12 (dec 2012), 2819--2828. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Prozone Sports Ltd. 2015. Prozone Sports—Our technology. Retrieved from http://prozonesports.stats.com/about/technology/.Google ScholarGoogle Scholar
  77. Charles Reep and Bernard Benjamin. 1968. Skill and chance in association football. J. Roy. Stat. Soc. Ser. A 131, 4 (1968), 581--585.Google ScholarGoogle ScholarCross RefCross Ref
  78. Brian J. Reich, James S. Hodges, Bradley P. Carlin, and Adam M. Reich. 2006. A spatial analysis of basketball shot chart data. Am. Stat. 60, 1 (Feb. 2006), 3--12.Google ScholarGoogle ScholarCross RefCross Ref
  79. Wulf Rossmann. 2002. Lie Groups: An Introduction Through Linear Groups. Oxford University Press, Oxford. 265 pages.Google ScholarGoogle Scholar
  80. Claude E. Shannon. 2001. A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5, 1 (Jan. 2001), 3--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Ashton Shortridge, Kirk Goldsberry, and Matthew Adams. 2014. Creating space to shoot: Quantifying spatial relative field goal efficiency in basketball. J. Quant. Anal. Sports 10, 3 (Jan. 2014), 303--313.Google ScholarGoogle Scholar
  82. Brian Skinner. 2010. The price of anarchy in basketball. J. Quant. Anal. Sports 6, 1 (Jan. 2010), 1--16.Google ScholarGoogle Scholar
  83. SportVision Inc. 2015. NHL, Sportvision test program to track players, puck. (2015). Retrieved from http://www.sportvision.com/news/nhl-sportvision-test-program-track-players-puck.Google ScholarGoogle Scholar
  84. STATS LLC. 2015. SportVU Player Tracking. Retrieved from http://www.stats.com/leagues-teams/.Google ScholarGoogle Scholar
  85. Manuel Stein, Johannes Häußler, Dominik Jäckle, Halldór Janetzko, Tobias Schreck, and Daniel Keim. 2015. Visual soccer analytics: Understanding the characteristics of collective team movement based on feature-driven analysis and abstraction. ISPRS Int. J. Geo-Inf. 4, 4 (Oct. 2015), 2159--2184.Google ScholarGoogle ScholarCross RefCross Ref
  86. Tsuyoshi Taki and Jun-ichi Hasegawa. 1998. Dominant region: A basic feature for group motion analysis and its application to teamwork evaluation in soccer games. In Proceedings of the IS&T/SPIE Conference on Videometrics VI. International Society for Optics and Photonics, San Jose, CA, 48--57.Google ScholarGoogle ScholarCross RefCross Ref
  87. Tsuyoshi Taki and Jun-ichi Hasegawa. 2000. Visualization of dominant region in team games and its application to teamwork analysis. In Proceedings Computer Graphics International 2000. IEEE Comput. Soc, Geneva, Switzerland, 227--235. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Tsuyoshi Taki, Jun-ichi Hasegawa, and Teruo Fukumura. 1996. Development of motion analysis system for quantitative evaluation of teamwork in soccer games. In Proceedings of 3rd IEEE International Conference on Image Processing, Vol. 3. IEEE, Lausanne, 815--818.Google ScholarGoogle ScholarCross RefCross Ref
  89. Fumiya Ueda, Honda Masaaki, and Horino Hiroyuki. 2014. The causal relationship between dominant region and offense- defense performance--Focusing on the time of ball acquisition. Footb. Sci. 11 (2014), 1--17.Google ScholarGoogle Scholar
  90. Jan Van Haaren, Vladimir Dzyuba, Siebe Hannosset, and Jesse Davis. 2015. Automatically discovering offensive patterns in soccer match data. In Proceedings of the 14th International Symposium on Advances in Intelligent Data Analysis XIV (IDA’15) (Lecture Notes in Computer Science), Vol. 9385. Springer, 286--297.Google ScholarGoogle ScholarCross RefCross Ref
  91. Richard von Mises and Hilda Pollaczek-Geiringer. 1929. Praktische verfahren der gleichungsauflösung. Zeitschr. Angew. Math. Mech. 9, 2 (1929), 152--164.Google ScholarGoogle ScholarCross RefCross Ref
  92. Qing Wang, Hengshu Zhu, Wei Hu, Zhiyong Shen, and Yuan Yao. 2015. Discerning tactical patterns for professional soccer teams. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’15). ACM Press, 2197--2206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Stanley Wasserman and Katherine Faust. 1997. Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences. Cambridge University Press, Cambridge.Google ScholarGoogle Scholar
  94. Xinyu Wei, Patrick Lucey, Stephen Vidas, Stuart Morgan, and Sridha Sridharan. 2015. Forecasting events using an augmented hidden conditional random field. In Proceedings of the 12th Asian Conference on Computer Vision. Lecture Notes in Computer Science, Vol. 9006. Springer International Publishing, Cham, 569--582.Google ScholarGoogle Scholar
  95. Xinyu Wei, Long Sha, Patrick Lucey, Stuart Morgan, and Sridha Sridharan. 2013. Large-scale analysis of formations in soccer. In Proceedings of the 2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA). IEEE, 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  96. Peter Weiner. 1973. Linear pattern matching algorithms. In Proceedings of the 14th Annual Symposium on Switching and Automata Theory (SWAT 1973). IEEE, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. Jenna Wiens, Guha Balakrishnan, Joel Brooks, and John Guttag. 2013. To crash or not to crash: A quantitative look at the relationship between offensive rebounding and transition defense in the NBA. In Proceedings of the 6th Annual MIT Sloan Sports Analytics Conference. MIT, Boston, 1--7.Google ScholarGoogle Scholar
  98. Yisong Yue, Patrick Lucey, Peter Carr, Alina Bialkowski, and Iain Matthews. 2014. Learning fine-grained spatial models for dynamic sports play prediction. In Proceedings of the 2014 IEEE International Conference on Data Mining. IEEE, 670--679. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Spatio-Temporal Analysis of Team Sports

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Computing Surveys
              ACM Computing Surveys  Volume 50, Issue 2
              March 2018
              567 pages
              ISSN:0360-0300
              EISSN:1557-7341
              DOI:10.1145/3071073
              • Editor:
              • Sartaj Sahni
              Issue’s Table of Contents

              Copyright © 2017 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 11 April 2017
              • Accepted: 1 February 2017
              • Revised: 1 October 2016
              • Received: 1 February 2016
              Published in csur Volume 50, Issue 2

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • survey
              • Research
              • Refereed

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader