skip to main content
10.1145/3060403.3060411acmconferencesArticle/Chapter ViewAbstractPublication PagesglsvlsiConference Proceedingsconference-collections
research-article

A Mixed-Size Monolithic 3D Placer with 2D Layout Inheritance

Authors Info & Claims
Published:10 May 2017Publication History

ABSTRACT

Monolithic 3D IC is a high integration density emerging technology in the age of both "More Moore" and "More-than-Moore". In this paper, we propose a novel method of generating mixed-size 3D placement based on transforming a 2D placement result. Experimental results indicate that, when compared with the input 2D placement, the 3D placer can reduce the wirelength by 57%, and provide a four-layer 3D chip footprint of about one quarter of the 2D counterpart. Moreover, our placer can preserve the layout information from the 2D placement input, which means that the 2D placement quality can be inherited in the 3D placement results. Compared with an analytical wirelength-driven placer, our placer achieves 34% benefit on 2D layout inheritance and 12% benefit on runtime with acceptable (4%) wirelength cost.

References

  1. K. Athikulwongse and et al. Stress-driven 3D-IC placement with TSV keep-out zone and regularity study. In ICCAD, pages 669--674, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. K. Athikulwongse, M. Pathak, and S. K. Lim. Exploiting die-to-die thermal coupling in 3D IC placement. TVLSI, 22(10):741--746, 2012.Google ScholarGoogle Scholar
  3. P. Batude, M. Vinet, A. Pouydebasque, C. L. Royer, B. Previtali, C. Tabone, J. M. Hartmann, L. Sanchez, L. Baud, and V. Carron. Advances in 3D CMOS sequential integration. IEDM, pages 1--4, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  4. S. Bobba and et al. CELONCEL: Effective design technique for 3-D monolithic integration targeting high performance integrated circuits. In ASPDAC, pages 336--343, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C.-C. Chang and J. Cong. An Efficient Approach to Multi-layer Layer Assignment with Application to Via Minimization. TCAD, 18(5):608--620, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. Cong and G. Luo. A Multilevel Analytical Placement for 3D ICs. In ASPDAC, pages 361--366, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Cong, G. Luo, and Y. Shi. Thermal-aware cell and through-silicon-via co-placement for 3D ICs. In DAC, pages 670--675, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Cong, G. Luo, J. Wei, and Y. Zhang. Thermal-Aware 3D IC Placement Via Transformation. In ASPDAC, pages 884--886, 2007.Google ScholarGoogle Scholar
  9. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms (Third Edition). The MIT Press, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. L. et al. ePlace-3D: Electrostatics based Placement for 3D-ICs. In ISPD, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. W. A. et al. "More-than-Moore" White Paper. In ITRS, Tech. Rep., 2010.Google ScholarGoogle Scholar
  12. B. Goplen and S. Sapatnekar. Placement of 3D ICs with Thermal and Interlayer Via Considerations. In DAC, pages 626--631, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Goto. An efficient algorithm for the two-dimensional placement problem in electrical circuit layout. IEEE Transactions on Circuits and Systems, 28(1):12--18, 1981.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. K. Hsu, V. Balabanov, and Y. W. Chang. TSV-Aware Analytical Placement for 3-D IC Designs Based on a Novel Weighted-Average Wirelength Model. TCAD, 32(4):497--509, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. M. Jung, H. Lim, K. H. Kwak, and K. Kim. A 500-MHz DDR High-Performance 72-Mb 3-D SRAM Fabricated With Laser-Induced Epitaxial c-Si Growth Technology for a Stand-Alone and Embedded Memory Application. IEEE Transactions on Electron Devices, 57(2):474--481, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  16. D. H. Kim and et al. Study of Through-Silicon-Via Impact on the 3-D Stacked IC Layout. TVLSI, 21(5):862--874, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Y. J. Lee, D. Limbrick, and S. K. Lim. Power benefit study for ultra-high density transistor-level monolithic 3D ICs. In DAC, pages 1--10, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and I. Nedelchev. POLAR: Placement based on novel rough legalization and refinement. In ICCAD, pages 357--362. IEEE, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. G. Luo, Y. Shi, and J. Cong. An Analytical Placement Framework for 3-D ICs and Its Extension on Thermal Awareness. TCAD, 32(4):510--523, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Pan, N. Viswanathan, and C. Chu. An efficient and effective detailed placement algorithm. In ICCAD, pages 48--55. IEEE Computer Society, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Panth, K. Samadi, Y. Du, and S. K. Lim. Placement-Driven Partitioning for Congestion Mitigation in Monolithic 3D IC Designs. TCAD, 34(4):540--553, 2015.Google ScholarGoogle Scholar
  22. S. Panth, K. Samadi, D. Yang, and S. K. Lim. Power-performance study of block-level monolithic 3D-ICs considering inter-tier performance variations. In DAC, pages 1--6, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. N. Viswanathan, C. Alpert, C. Sze, Z. Li, and Y. Wei. Iccad-2012 cad contest in design hierarchy aware routability-driven placement and benchmark suite. In ICCAD, pages 345--348. IEEE, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. N. Viswanathan, M. Pan, and C. Chu. Fastplace 2.0: An efficient analytical placer for mixed-mode designs. In ASPDAC, pages 221--223, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Mixed-Size Monolithic 3D Placer with 2D Layout Inheritance

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      GLSVLSI '17: Proceedings of the on Great Lakes Symposium on VLSI 2017
      May 2017
      516 pages
      ISBN:9781450349727
      DOI:10.1145/3060403

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 10 May 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      GLSVLSI '17 Paper Acceptance Rate48of197submissions,24%Overall Acceptance Rate312of1,156submissions,27%

      Upcoming Conference

      GLSVLSI '24
      Great Lakes Symposium on VLSI 2024
      June 12 - 14, 2024
      Clearwater , FL , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader