skip to main content
10.1145/3061639.3072948acmconferencesArticle/Chapter ViewAbstractPublication PagesdacConference Proceedingsconference-collections
research-article

Cryo-CMOS Electronic Control for Scalable Quantum Computing: Invited

Published: 18 June 2017 Publication History

Abstract

Quantum computers1 could revolutionize computing in a profound way due to the massive speedup they promise. A quantum computer comprises a cryogenic quantum processor and a classical electronic controller. When scaling up the cryogenic quantum processor to at least a few thousands, and possibly millions, of qubits required for any practical quantum algorithm, cryogenic CMOS (cryo-CMOS) electronics is required to allow feasible and compact interconnections between the controller and the quantum processor. Cryo-CMOS leverages the CMOS fabrication infrastructure while exploiting the continuous improvement of performance and miniaturization guaranteed by Moore's law, in order to enable the fabrication of a cost-effective practical quantum computer. However, designing cryo-CMOS integrated circuits requires a new set of CMOS device models, their embedding in design and verification tools, and the possibility to co-simulate the cryo-CMOS/quantum-processor architecture for full-system optimization. In this paper, we address these challenges by focusing on their impact on the design of complex cryo-CMOS systems.

References

[1]
A. Montanaro Quantum Algorithms: An Overview. npj Quantum Information 2, (Jan. 2016), 15023.
[2]
R. P. Feynman. Simulating physics with computers, International journal of theoretical physics 21, 6 (1982), 467--488.
[3]
K. M. Svore and M. Troyer. The Quantum Future of Computation, Computer 49, 9 (2016), 21--30.
[4]
J. M. Hornibrook et al. Cryogenic Control Architecture for Large-Scale Quantum Computing. Phys. Rev. Appl. 3 (2015), 024010.
[5]
H.Homulle, S.Visser, B.Patra, G.Ferrari, E.Prati, C.G. Almudever, K. Bertels, F. Sebastiano, and E. Charbon. CryoCMOS Hardware Technology - A Classical Infrastructure for a Scalable Quantum Computer," 2016 ACM International Conference on computing frontiers (2016).
[6]
E. Charbon, F. Sebastiano, M. Babaie, A. Vladimirescu, M. Shahmohammadi, R.B. Staszewski, H.A.R. Homulle, B. Patra, J.P.G. van Dijk, R.M. Incandela, L. Song, and B. Valizadehpasha. Cryo-CMOS Circuits and Systems for Scalable Quantum Computing. Proc. 2017 International Solid-State Circuits Conference (2017).
[7]
E. Charbon, F. Sebastiano, A. Vladimirescu, H. Homulle, S. Visser, L. Song, R.M. Incandela. Cryo-CMOS for quantum computing. Proc. 2016 IEEE International Electron Devices Meeting (IEDM) (2016).
[8]
L. Vandersypen. Quantum Computing-The Next Challenge in Circuit and System Design. Proc. 2017 International Solid-State Circuit Conference, (2017), 24--29.
[9]
F. R. Braakman, P. Barthelemy, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen. Long-distance coherent coupling in a quantum dot array. Nat. Nanotechnol. 8 (2013), 432--437.
[10]
E. Kawakami, P. Scarlino, D. R. Ward, F. R. Braakman, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotechnol. 9 (2014), 666.
[11]
D. Kim et al. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature 511 (2014), 70--4.
[12]
J. I. Colless, A. C. Mahoney, J. M. Hornibrook, A. C. Doherty, H. Lu, A. C. Gossard, and D. J. Reilly. Dispersive readout of a few-electron double quantum dot with fast RF gate sensors. Phys. Rev. Lett. 110 (2013), 046805.
[13]
R. Kalra, A. Laucht, C. D. Hill, and A. Morello. Robust two-qubit gates for donors in silicon controlled by hyperfine interactions. Phys. Rev. X. 4 (2014), 021044.
[14]
J. T. Muhonen et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol. 9 (2014), 986.
[15]
J. T. Muhonen et al. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking. J. Phys. Condens. Matter 27 (2015), 154205.
[16]
L. DiCarlo et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460 (2009), 240.
[17]
D. Risté, S. Poletto, M.-Z. Huang, A. Bruno, V. Vesterinen, O.-P. Saira, and L. DiCarlo. Detecting bit-flip errors in a logical qubit using stabilizer measurements. Nat. Commun. 6 (2015), 6983.
[18]
R. Barends et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508 (2014), 500.
[19]
E. Jeffrey et al. Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett. 112 (2014), 190504.
[20]
J. M. Chow, J. M. Gambetta, E. Magesan, D. W. Abraham, A. W. Cross, B. R. Johnson, N. A. Masluk, C. A. Ryan, J. A. Smolin, S. J. Srinivasan, and M. Steffen. Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat. Commun. 5 (2014), 4015.
[21]
A. Fowler, M. Mariantoni, J. Martinis, and A. Cleland. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A 86 (2012), 032324.
[22]
D. Wecker, B. Bauer, B. K. Clark, Bryan K. and M. B. Hastings, and M. Troyer. Gate-count estimates for performing quantum chemistry on small quantum computers. Phys. Rev. A, 90, 2 (2014), 022305.
[23]
D.J. Reilly. Engineering the quantum-classical interface of solid-state qubits. npj Quantum Information 1 (Oct. 2015), 15011.
[24]
J.D. Cressler and H.A. Mantooth, Eds. Extreme environment electronics. Boca Raton, Florida: CRC Press., 2013.
[25]
R. Kirschman. Survey of Low-Temperature Electronics. Workshop on Low-Temp. Electronics -- WOLTE11 (2014).
[26]
S.R. Ekanayake, T.Lehmann, A.S. Dzurak, R.G. Clark and A. Brawley. Characterization of SOS-CMOS FETs at Low Temperatures for the Design of Integrated Circuits for Quantum Bit Control and Readout. IEEE Tran. Electron Devices 57, 2 (Feb. 2010), 539--547.
[27]
M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge university press, 2010.
[28]
BlueFors Cryogenics. XLD Series. Retrieved March 17th, 2017 from http://www.bluefors.com/newsite/index.php/xld-seriest
[29]
X.Fu, L.Riesebos, L.Lao, C.G.Almudever, F.Sebastiano, R.Versluis, E.Charbon, and K.Bertels. A Heterogeneous Quantum Computer Architecture. 2016 ACM International Conference on computing frontiers (May 2016).
[30]
E. Simoen and C. Claeys. Impact of CMOS processing steps on the drain current kink of NMOSFETs at liquid helium temperature. IEEE Trans. Electron Devices, 48, 6 (Jun. 2001), 1207--1215.
[31]
A. Siligaris et al. High-Frequency and Noise Performances of 65-nm MOSFET at Liquid Nitrogen Temperature. IEEE Transactions on Electron Devices 53, 8 (Aug. 2006), 1902--1908.
[32]
A. H. Coskun and J. C. Bardin. Cryogenic small-signal and noise performance of 32nm SOI CMOS. 2014 IEEE MTT-S International Microwave Symposium, 2014.
[33]
M. Shin, M. Shi, M. Mouis, A. Cros, E. Josse, G. T. Kim and G. Ghibaudo. Low temperature characterization of 14nm FDSOI CMOS devices. 2014 11th International Workshop on Low Temperature Electronics (WOLTE), (2014).
[34]
H. Zhao, and X. Liu. Modeling of a standard 0.35 μm CMOS technology operating from 77K to 300K. Cryogenics 59 (2014), pp. 49--59.
[35]
P. Martin, A. S. Royet, F. Guellec, and G. Ghibaudo. MOSFET modeling for design of ultra-high performance infrared CMOS imagers working at cryogenic temperatures: Case of an analog/digital 0.18 μm CMOS process. Solid-State Electronics 62 (Feb. 2011), 115--122.
[36]
A. Akturk, M. Holloway, S. Potbhare, D. Gundlach, B. Li, N. Goldsman, M. Peckerar, and K. P. Cheung. Compact and Distributed Modeling of Cryogenic Bulk MOSFET Operation. IEEE Trans. Electron Devices 57, 6 (June 2010), 1334--1342.
[37]
G.S. Fonseca, L.B. de Sá, and A.C. Mesquita. Extraction of static parameters to extend the EKV model to cryogenic temperatures. Proc. SPIE (May 2016), 98192B-98192B.
[38]
Z. Zhu, A. Kathuria, S.G. Krishna, M. Mojarradi, B. Jalali-Farahani, H. Barnaby, W. Wu, and G. Gildenblat. Design applications of compact MOSFET model for extended temperature range (60-400K). Electronics Letters 47, 2 (Jan. 2011), 141--142.
[39]
L. Song, H. Homulle, E. Charbon, and F. Sebastiano. Characterization of bipolar transistors for cryogenic temperature sensors in standard CMOS. Proc. 2016 IEEE Sensors (2016).
[40]
K. Das, T. Lehmann. Effect of deep cryogenic temperature on silicon-on-insulator CMOS mismatch: A circuit designer's perspective. Cryogenics 62 (2014), 84--93.
[41]
I.D.Conway Lamb, J.I. Colless, J.M. Hornibrook, S.J. Pauka, S.J.Waddy, M.K.Frechtling, and D.J. Reilly. A FPGA-based instrumentation platform for use at deep cryogenic temperatures. Rev. Sci. Instrum. 87 (2016), 014701.
[42]
H. Homulle, S. Visser and E. Charbon. A Cryogenic 1 GSa/s, Soft-Core FPGA ADC for Quantum Computing Applications. IEEE Tran. Circuits and Systems I: Regular Papers 63, 11 (Nov.2016), 1854--1865.
[43]
H. Homulle, S. Visser, B. Patra, G. Ferrari, E. Prati, F. Sebastiano, and E. Charbon. A Reconfigurable Cryogenic Platform for the Classical Control of Scalable Quantum Computers. arXiv:1602.05786

Cited By

View all
  • (2024)Deep Cryogenic Temperature CMOS Circuit and System Design for Quantum Computing ApplicationsEAI Endorsed Transactions on Energy Web10.4108/ew.499711Online publication date: 1-Feb-2024
  • (2024)Revisiting Dynamic Logic—A True Candidate for Energy-Efficient Cryogenic Operation in Nanoscaled TechnologiesIEEE Transactions on Circuits and Systems I: Regular Papers10.1109/TCSI.2023.333281771:3(987-999)Online publication date: Mar-2024
  • (2024)IceMOS: Cryo-CMOS Python-Based Calibration Tool2024 IEEE 67th International Midwest Symposium on Circuits and Systems (MWSCAS)10.1109/MWSCAS60917.2024.10658695(1011-1015)Online publication date: 11-Aug-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
DAC '17: Proceedings of the 54th Annual Design Automation Conference 2017
June 2017
533 pages
ISBN:9781450349277
DOI:10.1145/3061639
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 18 June 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Cryo-CMOS
  2. cryogenics
  3. device models
  4. error-correcting loop
  5. quantum computation
  6. qubit

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

DAC '17
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,770 of 5,499 submissions, 32%

Upcoming Conference

DAC '25
62nd ACM/IEEE Design Automation Conference
June 22 - 26, 2025
San Francisco , CA , USA

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)121
  • Downloads (Last 6 weeks)9
Reflects downloads up to 17 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Deep Cryogenic Temperature CMOS Circuit and System Design for Quantum Computing ApplicationsEAI Endorsed Transactions on Energy Web10.4108/ew.499711Online publication date: 1-Feb-2024
  • (2024)Revisiting Dynamic Logic—A True Candidate for Energy-Efficient Cryogenic Operation in Nanoscaled TechnologiesIEEE Transactions on Circuits and Systems I: Regular Papers10.1109/TCSI.2023.333281771:3(987-999)Online publication date: Mar-2024
  • (2024)IceMOS: Cryo-CMOS Python-Based Calibration Tool2024 IEEE 67th International Midwest Symposium on Circuits and Systems (MWSCAS)10.1109/MWSCAS60917.2024.10658695(1011-1015)Online publication date: 11-Aug-2024
  • (2024)A Benchmark of Cryo-CMOS Embedded SRAM/DRAMs in 40-nm CMOSIEEE Journal of Solid-State Circuits10.1109/JSSC.2024.338569659:7(2042-2054)Online publication date: Jul-2024
  • (2024)A Cryogenic Phase-Selection Superconducting Qubit Controller with Envelope-Tracking in 28nm Bulk CMOS2024 IEEE International Symposium on Circuits and Systems (ISCAS)10.1109/ISCAS58744.2024.10557985(1-5)Online publication date: 19-May-2024
  • (2024)Characterizing Analog Figure of Merits of 5 nm Technology Node FinFETs from 10 K to 400 K2024 8th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)10.1109/EDTM58488.2024.10511570(1-3)Online publication date: 3-Mar-2024
  • (2023)Implementation of Combinational and Sequential Logic Circuits using Quantum ComputingInternational Journal of Scientific Research in Computer Science, Engineering and Information Technology10.32628/CSEIT23903106(430-439)Online publication date: 1-Jun-2023
  • (2023)Cryogenic CMOS RF Circuits: A Promising Approach for Large-Scale Quantum ComputingIEEE Transactions on Circuits and Systems II: Express Briefs10.1109/TCSII.2023.3333540(1-1)Online publication date: 2023
  • (2023)Overview of Cryogenic Operation in Nanoscale Technology Nodes2023 IEEE 14th Latin America Symposium on Circuits and Systems (LASCAS)10.1109/LASCAS56464.2023.10108221(1-4)Online publication date: 27-Feb-2023
  • (2023)Stability Analysis of 6T SRAM at Deep Cryogenic Temperature for Quantum Computing Applications2023 IEEE International Symposium on Circuits and Systems (ISCAS)10.1109/ISCAS46773.2023.10181946(1-5)Online publication date: 21-May-2023
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media