skip to main content
10.1145/3071178.3071262acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Multi-objective optimization of level of service in urban transportation

Published: 01 July 2017 Publication History

Abstract

This work investigates levels of service in urban transportation coupling a multi-objective evolutionary algorithm with the multi-agent traffic simulator MATSim. The evolutionary algorithm searches combinations of number of private/public transportation users, capacity of buses, and time interval between bus departures minimizing traffic density, travel time and fuel consumption simultaneously. MATSim simulates the movement of 27.000 agents according to the solutions of the evolutionary algorithm on a model of the traffic network of Quito city. We study the trade-off in objectives and analyze the solutions produced to gain knowledge about the conditions to achieve different levels of service. Also, we analyze particulate matter emissions for the trade-off solutions. This work is useful for decision makers to suggest policies that can improve mobility combining private and public transportation.

References

[1]
Horni A., Nagel K., and Axhausen A. 2016. Multi-Agent Transport Simulation MATSim. . London: Ubiquity Press.
[2]
H. Aguirre, A. Oyama, and Tanaka K. 2013. Adaptive ε-Sampling and ε-Hood for Evolutionary Many-Objective Optimization, In Evolutionary Multi-Criterion Optimization. Proc. Evolutionary Multicriterion Optimization Conference (EMO 2013) 7811 (2013), 322--336.
[3]
Renato Oliveira Arbex and Claudio Barbieri da Cunha. 2015. Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm. Transportation Research Part B: Methodological 81 (2015), 355--376.
[4]
Maurizio Bielli, Massimiliano Caramia, and Pasquale Carotenuto. 2002. Genetic algorithms in bus network optimization. Transportation Research Part C: Emerging Technologies 10, 1 (2002), 19--34.
[5]
Transportation Research Board. 2000. Highway Capacity Manual. National Research Council, Washington DC.
[6]
Distrito Metropolitano de Quito. 2012. Encuesta domiciliaria de movilidad (EDM11) del Distrito Metropolitano de Quito - 13 de marzo de 2012. Presentation Document.
[7]
Distrito Metropolitano de Quito. 2015. Empresa Publica Metropolitana de Transporte de Pasajeros - Rendicion de Cuentas 2015. Document.
[8]
F. Demoraes. 2005. Movilidad, elementos escenciales y riesgos en el Distrito Metropolitano de Quito. Ph.D. Dissertation. Universidad de Savoie - Francia.
[9]
Grupo Faro. 2010. Reverdeciendo las polticas: Hacia una movilidad sustentable en Quito: El potencial de la bicicleta como medio de transporte alternativo. (March 2010). http://www.grupofaro.org/ Accessed: January 2017.
[10]
R. Frederik, J. Topf, and C. Karch. 2007. Geofabrik. (2007). http://www.geofabrik.de http://www.geofabrik.de, Accessed: January 2014.
[11]
R. Gakenheimer. 1999. Urban Mobility in the developing world. Transportation Research Part A: Policy and Practice 33 (1999), 671--689.
[12]
Kim Jin Hee, Bae Yun Kyung, and Chung Jin Hyuk. 2012. Multi objective Optimization for Sustainable Road Network Design Problem. International Conference on Transport, Environment and Civil Engineering (ICTECE'2012) (2012), 5.
[13]
F Hülsmann, B. Gerike, R. and Kickhöfer, K. Nagel, and R. Luz. 2011. Towards a multi-agent based modeling approach for air pollutants in urban regions. Proceedings of the Conference on "Luftqualität an Straßen" FGSV Verlag GmbH (2011), 144--166. http://www.matsim.org/extension/emissions
[14]
INEC. 2010. Equadorian National Institute of Statistics. (2010). http://www.ecuadorencifras.gob.ee/, Accessed: October-2014.
[15]
M. Keller and P. Wuthrich. 2014. Handbook Emission Factors for Road Transport 3.1 / 3.2. (June 2014).
[16]
Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler. 2002. Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation 10, 3 (2002), 263--282.
[17]
Jihui Ma, Yanqing Zhao, Yang Yang, Tao Liu, Wei Guan, and Jiao Wang. 2017. A Model for the Stop Planning and Timetables of Customized Buses. (2017), 1--28.
[18]
E. Prassas R. Roess and W. McShane. 2011. Traffic Engineering. Ed.Pearson, USA.
[19]
Daniel H. Stolfi and Enrique Alba. 2015. Smart Mobility Policies with Evolutionary Algorithms: The Adapting Info Panel Case. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO '15). ACM, New York, NY, USA, 1287--1294.
[20]
F Teklu, A Sumalee, and D Watling. 2007. A Genetic Algorithm Approach for Optimizing Traffic Control Signals Considering Routing. Computer-Aided Civil and Infrastructure Engineering (2007), 31--43.
[21]
Department of Economic United Nations and Population Division Social Affairs. (2014). World Urbanization Prospects: The 2014 Revision. (2014).

Cited By

View all
  • (2024)Benchmark Mobility Problems Using Real-World Data: The Example of Bus Stops Spacing Problem for the City of CalaisProceeding of the 7th International Conference on Logistics Operations Management, GOL'2410.1007/978-3-031-68634-4_10(105-113)Online publication date: 21-Sep-2024
  • (2024)Sparse Surrogate Model for Optimization: Example of the Bus Stops Spacing ProblemEvolutionary Computation in Combinatorial Optimization10.1007/978-3-031-57712-3_2(16-32)Online publication date: 2024
  • (2020)Bioinspired Computational Intelligence and Transportation Systems: A Long Road AheadIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2019.289737721:2(466-495)Online publication date: Feb-2020

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '17: Proceedings of the Genetic and Evolutionary Computation Conference
July 2017
1427 pages
ISBN:9781450349208
DOI:10.1145/3071178
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 July 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. evolutionary algorithms
  2. level of service
  3. multi-objective optimization
  4. urban transportation

Qualifiers

  • Research-article

Conference

GECCO '17
Sponsor:

Acceptance Rates

GECCO '17 Paper Acceptance Rate 178 of 462 submissions, 39%;
Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)1
Reflects downloads up to 02 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Benchmark Mobility Problems Using Real-World Data: The Example of Bus Stops Spacing Problem for the City of CalaisProceeding of the 7th International Conference on Logistics Operations Management, GOL'2410.1007/978-3-031-68634-4_10(105-113)Online publication date: 21-Sep-2024
  • (2024)Sparse Surrogate Model for Optimization: Example of the Bus Stops Spacing ProblemEvolutionary Computation in Combinatorial Optimization10.1007/978-3-031-57712-3_2(16-32)Online publication date: 2024
  • (2020)Bioinspired Computational Intelligence and Transportation Systems: A Long Road AheadIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2019.289737721:2(466-495)Online publication date: Feb-2020

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media