skip to main content
10.1145/3071178.3071301acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Fast genetic algorithms

Published:01 July 2017Publication History

ABSTRACT

For genetic algorithms (GAs) using a bit-string representation of length n, the general recommendation is to take 1/n as mutation rate. In this work, we discuss whether this is justified for multi-modal functions. Taking jump functions and the (1+1) evolutionary algorithm (EA) as the simplest example, we observe that larger mutation rates give significantly better runtimes. For the Jumpm, n function, any mutation rate between 2/n and m/n leads to a speedup at least exponential in m compared to the standard choice.

The asymptotically best runtime, obtained from using the mutation rate m/n and leading to a speed-up super-exponential in m, is very sensitive to small changes of the mutation rate. Any deviation by a small (1 ± ε) factor leads to a slow-down exponential in m. Consequently, any fixed mutation rate gives strongly sub-optimal results for most jump functions.

Building on this observation, we propose to use a random mutation rate α/n, where α is chosen from a power-law distribution. We prove that the (1 + 1) EA with this heavy-tailed mutation rate optimizes any Jumpm, n function in a time that is only a small polynomial (in m) factor above the one stemming from the optimal rate for this m. Our heavy-tailed mutation operator yields similar speed-ups (over the best known performance guarantees) for the vertex cover problem in bipartite graphs and the matching problem in general graphs.

Following the example of fast simulated annealing, fast evolution strategies, and fast evolutionary programming, we propose to call genetic algorithms using a heavy-tailed mutation operator fast genetic algorithms.

References

  1. Anne Auger and Benjamin Doerr. 2011. Theory of Randomized Search Heuristics: Foundations and Recent Developments. World Scientific. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Thomas Bäck. 1993. Optimal mutation rates in genetic search. In ICGA. Morgan Kaufmann, 2--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. 2014. Unbiased black-box complexity of parallel search. In Parallel Problem Solving from Nature XIII. Springer, 892--901.Google ScholarGoogle Scholar
  4. Süntje Böttcher, Benjamin Doerr, and Frank Neumann. 2010. Optimal fixed and adaptive mutation rates for the LeadingOnes problem. In PPSN (1) (Lecture Notes in Computer Science), Vol. 6238. Springer, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kristian Lehre, Pietro Simone Oliveto, Dirk Sudholt, and Andrew M. Sutton. 2016. Emergence of diversity and its benefits for crossover in genetic algorithms. In PPSN (Lecture Notes in Computer Science), Vol. 9921. Springer, 890--900.Google ScholarGoogle Scholar
  6. Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kristian Lehre, Pietro Simone Oliveto, Dirk Sudholt, and Andrew M. Sutton. 2016. Escaping local optima with diversity mechanisms and crossover. In GECCO. ACM, 645--652. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Duc-Cuong Dang and Per Kristian Lehre. 2016. Runtime analysis of non-elitist populations: From classical optimisation to partial information. Algorithmica 75 (2016), 428--461. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Benjamin Doerr, Carola Doerr, and Franziska Ebel. 2015. From black-box complexity to designing new genetic algorithms. Theoretical Computer Science 567 (2015), 87--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. 2017. The (1+λ) evolutionary algorithm with self-adjusting mutation rate. In GECCO. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Benjamin Doerr, Edda Happ, and Christian Klein. 2012. Crossover can provably be useful in evolutionary computation. Theoretical Computer Science 425 (2012), 17--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Frank Neumann, and Madeleine Theile. 2013. More effective crossover operators for the all-pairs shortest path problem. Theoretical Computer Science 471 (2013), 12--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Benjamin Doerr and Marvin Künnemann. 2015. Optimizing linear functions with the (1+λ) evolutionary algorithm - Different asymptotic runtimes for different instances. Theoretical Computer Science 561 (2015), 3--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. 2017. Fast genetic algorithms. ArXiv e-prints (March 2017). arXiv:1703.03334Google ScholarGoogle Scholar
  14. Stefan Droste, Thomas Jansen, and Ingo Wegener. 2002. On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276 (2002), 51--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Simon Fischer and Ingo Wegener. 2005. The one-dimensional Ising model: Mutation versus recombination. Theoretical Computer Science 344 (2005), 208--225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Tobias Friedrich, Jun He, Nils Hebbinghaus, Frank Neumann, and Carsten Witt. 2010. Approximating covering problems by randomized search heuristics using multi-objective models. Evolutionary Computation 18 (2010), 617--633. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Oliver Giel and Ingo Wegener. 2003. Evolutionary algorithms and the maximum matching problem. In STACS (Lecture Notes in Computer Science), Vol. 2607. Springer, 415--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Oliver Giel and Ingo Wegener. 2004. Searching randomly for maximum matchings. Electronic Colloquium on Computational Complexity (ECCC) 076 (2004).Google ScholarGoogle Scholar
  19. Christian Gießen and Carsten Witt. 2015. Population size vs. mutation strength for the (1+λ) EA on OneMax. In GECCO. ACM, 1439--1446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. GitHub. 2017. Fast genetic algorithms. (2017). https://github.com/FastGA/fast-genetic-algorithms.Google ScholarGoogle Scholar
  21. Nikolaus Hansen, Fabian Gemperle, Anne Auger, and Petros Koumoutsakos. 2006. When do heavy-tail distributions help?. In PPSN (Lecture Notes in Computer Science), Vol. 4193. Springer, 62--71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. 2005. On the choice of the offspring population size in evolutionary algorithms. Evolutionary Computation 13 (2005), 413--440. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Thomas Jansen and Ingo Wegener. 2005. Real royal road functions-where crossover provably is essential. Discrete Applied Mathematics 149 (2005), 111--125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Thomas Jansen and Ingo Wegener. 2006. On the analysis of a dynamic evolutionary algorithm. J. Discrete Algorithms 4 (2006), 181--199.Google ScholarGoogle ScholarCross RefCross Ref
  25. Timo Kötzing, Dirk Sudholt, and Madeleine Theile. 2011. How crossover helps in pseudo-Boolean optimization. In GECCO. ACM, 989--996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Heinz Mühlenbein. 1992. How genetic algorithms really work: Mutation and hillclimbing. In PPSN. Elsevier, 15--26.Google ScholarGoogle Scholar
  27. Frank Neumann and Ingo Wegener. 2007. Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theoretical Computer Science 378 (2007), 32--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Frank Neumann and Carsten Witt. 2010. Bioinspired Computation in Combinatorial Optimization: Algorithms and Their Computational Complexity. Springer Berlin Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Petr Posik. 2009. BBOB-benchmarking a simple estimation of distribution algorithm with Cauchy distribution. In GECCO (Companion). ACM, 2309--2314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Petr Posík. 2010. Comparison of Cauchy EDA and BIPOP-CMA-ES algorithms on the BBOB noiseless testbed. In GECCO (Companion). ACM, 1697--1702. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Günter Rudolph. 1997. Convergence Properties of Evolutionary Algorithms. Kovac.Google ScholarGoogle Scholar
  32. Jens Scharnow, Karsten Tinnefeid, and Ingo Wegener. 2004. The analysis of evolutionary algorithms on sorting and shortest paths problems. J. Math. Model. Algorithms 3 (2004), 349--366.Google ScholarGoogle ScholarCross RefCross Ref
  33. Tom Schaul, Tobias Glasmachers, and Jürgen Schmidhuber. 2011. High dimensions and heavy tails for natural evolution strategies. In GECCO. ACM, 845--852. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Tobias Storch and Ingo Wegener. 2004. Real royal road functions for constant population size. Theoretical Computer Science 320 (2004), 123--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Dirk Sudholt. 2005. Crossover is provably essential for the ising model on trees. In GECCO. ACM, 1161--1167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Harold H. Szu and Ralph L. Hartley. 1987. Fast simulated annealing. Physics Letters A 122 (June 1987), 157--162.Google ScholarGoogle Scholar
  37. Ingo Wegener. 2001. Theoretical aspects of evolutionary algorithms. In ICALP (Lecture Notes in Computer Science), Vol. 2076. Springer, 64--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Carsten Witt. 2005. Worst-case and average-case approximations by simple randomized search heuristics. In STACS (Lecture Notes in Computer Science), Vol. 3404. Springer, 44--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Carsten Witt. 2006. Runtime analysis of the (μ + 1) EA on simple pseudo-Boolean functions. Evolutionary Computation 14 (2006), 65--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Carsten Witt. 2013. Tight bounds on the optimization time of a randomized search heuristic on linear functions. Combinatorics, Probability & Computing 22 (2013), 294--318.Google ScholarGoogle ScholarCross RefCross Ref
  41. Xin Yao and Yong Liu. 1997. Fast evolution strategies. In Evolutionary Programming (Lecture Notes in Computer Science), Vol. 1213. Springer, 151--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Xin Yao, Yong Liu, and Guangming Lin. 1999. Evolutionary programming made faster. IEEE Trans. Evolutionary Computation 3 (1999), 82--102. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fast genetic algorithms

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      GECCO '17: Proceedings of the Genetic and Evolutionary Computation Conference
      July 2017
      1427 pages
      ISBN:9781450349208
      DOI:10.1145/3071178

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 July 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      GECCO '17 Paper Acceptance Rate178of462submissions,39%Overall Acceptance Rate1,669of4,410submissions,38%

      Upcoming Conference

      GECCO '24
      Genetic and Evolutionary Computation Conference
      July 14 - 18, 2024
      Melbourne , VIC , Australia

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader