skip to main content
research-article

Consistent functional cross field design for mesh quadrangulation

Published: 20 July 2017 Publication History

Abstract

We propose a novel technique for computing consistent cross fields on a pair of triangle meshes given an input correspondence, which we use as guiding fields for approximately consistent quadrangulations. Unlike the majority of existing methods our approach does not assume that the meshes share the same connectivity or even have the same number of vertices, and furthermore does not place any restrictions on the topology (genus) of the shapes. Importantly, our method is robust with respect to small perturbations of the given correspondence, as it only relies on the transportation of real-valued functions and thus avoids the costly and error-prone estimation of the map differential. Key to this robustness is a novel formulation, which relies on the previously-proposed notion of power vectors, and we show how consistency can be enforced without pre-alignment of local basis frames, in which these power vectors are computed. We demonstrate that using the same formulation we can both compute a quadrangulation that would respect a given symmetry on the same shape or a map across a pair of shapes. We provide quantitative and qualitative comparison of our method with several baselines and show that it both provides more accurate results and allows to handle more general cases than existing techniques.

Supplementary Material

MP4 File (papers-0501.mp4)

References

[1]
Noam Aigerman, Roi Poranne, and Yaron Lipman. 2015. Seamless surface mappings. ACM Transactions on Graphics (TOG) 34, 4 (2015), 72.
[2]
Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, and James Davis. 2005. SCAPE: shape completion and animation of people. In ACM Transactions on Graphics (TOG), Vol. 24. ACM, 408--416.
[3]
Omri Azencot, Mirela Ben-Chen, Frédéric Chazal, and Maks Ovsjanikov. 2013. An operator approach to tangent vector field processing. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 73--82.
[4]
David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini, and Denis Zorin. 2013. Quad-Mesh Generation and Processing: A Survey. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 51--76.
[5]
David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer quadrangulation. ACM Transactions On Graphics (TOG) 28, 3 (2009), 77.
[6]
Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2014. Designing N-PolyVector Fields with Complex Polynomials. In Computer Graphics Forum, Vol. 33. Wiley Online Library, 1--11.
[7]
Hans-Christian Ebke, David Bommes, Marcel Campen, and Leif Kobbelt. 2013. QEx: robust quad mesh extraction. ACM Transactions on Graphics (TOG) 32, 6 (2013), 168.
[8]
Theodore Frankel. 2011. The geometry of physics: an introduction. Cambridge University Press.
[9]
A Jacobson, D Panozzo, C Schüller, O Diamanti, Q Zhou, N Pietroni, and others. 2013. libigl: A simple C++ geometry processing library. (2013).
[10]
Vladimir G Kim, Yaron Lipman, and Thomas Funkhouser. 2011. Blended intrinsic maps. In ACM Transactions on Graphics (TOG), Vol. 30. ACM, 79.
[11]
Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally optimal direction fields. ACM Transactions on Graphics (TOG) 32, 4 (2013), 59.
[12]
O. Litany, E. Rodolà, A. M. Bronstein, M. M. Bronstein, and D. Cremers. 2016. Non-Rigid Puzzles. Computer Graphics Forum (Proc. SGP) 35, 5 (2016), 135--143.
[13]
Giorgio Marcias, Nico Pietroni, Daniele Panozzo, Enrico Puppo, and Olga Sorkine-Hornung. 2013. Animation-Aware Quadrangulation. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 167--175.
[14]
Giorgio Marcias, Kenshi Takayama, Nico Pietroni, Daniele Panozzo, Olga Sorkine-Hornung, Enrico Puppo, and Paolo Cignoni. 2015. Data-driven interactive quadrangulation. ACM Transactions on Graphics (TOG) 34, 4 (2015), 65.
[15]
Min Meng and Ying He. 2016. Consistent quadrangulation for shape collections via feature line co-extraction. Computer-Aided Design 70 (2016), 78 -- 88. {SPM} 2015.
[16]
Shigeyuki Morita. 2001. Geometry of differential forms. Vol. 201. American Mathematical Soc.
[17]
Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas. 2012. Functional maps: a flexible representation of maps between shapes. ACM Transactions on Graphics (TOG) 31, 4 (2012), 30.
[18]
Maks Ovsjanikov, Etienne Corman, Michael Bronstein, Emanuele Rodolà, Mirela Ben-Chen, Leonidas Guibas, Frederic Chazal, and Alex Bronstein. 2016. Computing and Processing Correspondences with Functional Maps. In SIGGRAPH ASIA 2016 Courses. Article 9, 60 pages.
[19]
Daniele Panozzo, Yaron Lipman, Enrico Puppo, and Denis Zorin. 2012. Fields on symmetric surfaces. ACM Trans. Graph. 31, 4 (2012), 111--1.
[20]
J. Pokrass, A. M. Bronstein, M. M. Bronstein, P. Sprechmann, and G. Sapiro. 2013. Sparse Modeling of Intrinsic Correspondences. Computer Graphics Forum 32, 2pt4 (2013), 459--468.
[21]
Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. 2006. Periodic global parameterization. ACM Transactions on Graphics (TOG) 25, 4 (2006), 1460--1485.
[22]
Nicolas Ray, Bruno Vallet, Laurent Alonso, and Bruno Levy. 2009. Geometry-aware direction field processing. ACM Transactions on Graphics (TOG) 29, 1 (2009), 1.
[23]
Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno Lévy 2008. N-symmetry direction field design. ACM Transactions on Graphics (TOG) 27, 2 (2008), 10.
[24]
E. Rodolà, M. Moeller, and D. Cremers. 2015. Point-wise Map Recovery and Refinement from Functional Correspondence. In Proc. Vision, Modeling and Visualization (VMV).
[25]
Szymon Rusinkiewicz. 2004. Estimating curvatures and their derivatives on triangle meshes. In 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. Proceedings. 2nd International Symposium on. IEEE, 486--493.
[26]
Julien Tierny, Joel Daniels II, Luis G. Nonato, Valerio Pascucci, and Claudio T. Silva. 2011. Inspired quadrangulation. Computer-Aided Design 43, 11 (2011), 1516 -- 1526. Solid and Physical Modeling 2011.
[27]
Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus Hildebrandt, and Mirela Ben-Chen. 2016. Directional Field Synthesis, Design, and Processing. Computer Graphics Forum (2016).
[28]
Chih-Yuan Yao, Hung-Kuo Chu, Tao Ju, and Tong-Yee Lee. 2009. Compatible quadrangulation by sketching. Computer Animation and Virtual Worlds 20, 2--3 (2009), 101--109.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 36, Issue 4
August 2017
2155 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/3072959
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 20 July 2017
Published in TOG Volume 36, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. consistent remeshing
  2. correspondence
  3. cross field design
  4. quad remeshing

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)37
  • Downloads (Last 6 weeks)3
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Anisotropy and Cross FieldsComputer Graphics Forum10.1111/cgf.1513243:5Online publication date: 5-Aug-2024
  • (2022)High-Order Directional FieldsACM Transactions on Graphics10.1145/3550454.355545541:6(1-17)Online publication date: 30-Nov-2022
  • (2022)Dev2PQ: Planar Quadrilateral Strip Remeshing of Developable SurfacesACM Transactions on Graphics10.1145/351000241:3(1-18)Online publication date: 7-Mar-2022
  • (2022)Mesh Draping: Parametrization‐Free Neural Mesh TransferComputer Graphics Forum10.1111/cgf.1472142:1(72-85)Online publication date: 30-Nov-2022
  • (2022)Complex Functional Maps: A Conformal Link Between Tangent BundlesComputer Graphics Forum10.1111/cgf.1443741:1(317-334)Online publication date: Feb-2022
  • (2021)Computational Design of Knit TemplatesACM Transactions on Graphics10.1145/348800641:2(1-16)Online publication date: 6-Dec-2021
  • (2021)Unconventional patterns on surfacesACM Transactions on Graphics10.1145/3450626.345993340:4(1-16)Online publication date: 19-Jul-2021
  • (2021)PH-CPFACM Transactions on Graphics10.1145/3450626.345977040:4(1-19)Online publication date: 19-Jul-2021
  • (2021)Frame Field OperatorsComputer Graphics Forum10.1111/cgf.1437040:5(231-245)Online publication date: 23-Aug-2021
  • (2021)A Data‐Driven Approach to Functional Map Construction and Bases PursuitComputer Graphics Forum10.1111/cgf.1436040:5(97-110)Online publication date: 23-Aug-2021
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media