skip to main content
research-article
Open Access

Discovering and synthesizing humanoid climbing movements

Published:20 July 2017Publication History
Skip Abstract Section

Abstract

This paper addresses the problem of offline path and movement planning for wall climbing humanoid agents. We focus on simulating bouldering, i.e. climbing short routes with diverse moves, although we also demonstrate our system on a longer wall. Our approach combines a graph-based high-level path planner with low-level sampling-based optimization of climbing moves. Although the planning problem is complex, our system produces plausible solutions to bouldering problems (short climbing routes) in less than a minute. We further utilize a k-shortest paths approach, which enables the system to discover alternative paths - in climbing, alternative strategies often exist, and what might be optimal for one climber could be impossible for others due to individual differences in strength, flexibility, and reach. We envision our system could be used, e.g. in learning a climbing strategy, or as a test and evaluation tool for climbing route designers. To the best of our knowledge, this is the first paper to solve and simulate rich humanoid wall climbing, where more than one limb can move at the same time, and limbs can also hang free for balance or use wall friction in addition to predefined holds.

Skip Supplemental Material Section

Supplemental Material

papers-0568.mp4

mp4

349.7 MB

References

  1. Rami Aladdin and Paul Kry. 2012. Static Pose Reconstruction with an Instrumented Bouldering Wall. In Proceedings of the 18th ACM Symposium on Virtual Reality Software and Technology (VRST '12). ACM, New York, NY, USA, 177--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Timothy Bretl. 2006. Motion Planning of Multi-Limbed Robots Subject to Equilibrium Constraints: The Free-Climbing Robot Problem. The International Journal of Robotics Research 25, 4 (2006), 317--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Oliver Brock and Oussama Khatib. 2002. Elastic Strips: A Framework for Motion Generation in Human Environments. The International Journal of Robotics Research 21, 12 (2002), 1031--1052. Google ScholarGoogle ScholarCross RefCross Ref
  4. Myung Geol Choi, Manmyung Kim, Kyung Lyul Hyun, and Jehee Lee. 2011. Deformable Motion: Squeezing into Cluttered Environments. In Computer Graphics Forum, Vol. 30. Wiley Online Library, 445--453.Google ScholarGoogle ScholarCross RefCross Ref
  5. Min Gyu Choi, Jehee Lee, and Sung Yong Shin. 2003. Planning Biped Locomotion Using Motion Capture Data and Probabilistic Roadmaps. ACM Transactions on Graphics (TOG) 22, 2 (2003), 182--203. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Nguyen Anh Dung and Akira Shimada. 2014. A Path-Planning Algorithm for Humanoid Climbing Robot Using Kinect Sensor. In SICE Annual Conference (SICE) in Sapporo. IEEE, 1549--1554. Google ScholarGoogle ScholarCross RefCross Ref
  7. David Eppstein. 1998. Finding the k Shortest Paths. SIAM Journal on Computing 28, 2 (1998), 652--673. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. David Eppstein and others. 2016. k-Best Enumeration. Springer. (2016). Google ScholarGoogle ScholarCross RefCross Ref
  9. Ian Garcia and Jonathan P How. 2005. Improving the Efficiency of Rapidly-Exploring Random Trees Using a Potential Function Planner. In Proceedings of the 44th IEEE Conference on Decision and Control. IEEE, 7965--7970. Google ScholarGoogle ScholarCross RefCross Ref
  10. Jürgen Guldner, Vadim I Utkin, and Hideki Hashimoto. 1997. Robot Obstacle Avoidance in n-Dimensional Space Using Planar Harmonic Artificial Potential Fields. Journal of Dynamic Systems, Measurement, and Control 119, 2 (1997), 160--166. Google ScholarGoogle ScholarCross RefCross Ref
  11. Perttu Hämäläinen, Joose Rajamäki, and C Karen Liu. 2015. Online Control of Simulated Humanoids Using Particle Belief Propagation. ACM Transactions on Graphics (TOG) 34, 4 (2015), 81.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Nikolaus Hansen. 2006. The CMA Evolution Strategy: A Comparing Review. In Towards a New Evolutionary Computation. Springer, 75--102. Google ScholarGoogle ScholarCross RefCross Ref
  13. Michael Hoy, Alexey S Matveev, and Andrey V Savkin. 2015. Algorithms for Collision-Free Navigation of Mobile Robots in Complex Cluttered Environments: A Survey. Robotica 33, 03 (2015), 463--497. Google ScholarGoogle Scholar
  14. Sumit Jain, Yuting Ye, and C Karen Liu. 2009. Optimization-Based Interactive Motion Synthesis. ACM Transactions on Graphics (TOG) 28, 1 (2009), 10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Raine Kajastila, Leo Holsti, and Perttu Hämäläinen. 2016. The Augmented Climbing Wall: High-Exertion Proximity Interaction on a Wall-Sized Interactive Surface. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI '16). ACM, New York, NY, USA, 758--769. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. 1996. Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces. IEEE transactions on Robotics and Automation 12, 4 (1996), 566--580.Google ScholarGoogle Scholar
  17. James J Kuffner and Steven M LaValle. 2000. RRT-Connect: An Efficient Approach to Single-Query Path Planning. In Robotics and Automation, 2000. Proceedings. ICRA'00. IEEE International Conference on, Vol. 2. IEEE, 995--1001.Google ScholarGoogle ScholarCross RefCross Ref
  18. Steven M. Lavalle. 1998. Rapidly-Exploring Random Trees: A New Tool for Path Planning. Technical Report. TR 98-11, Computer Science Dept., Iowa State Univ. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.1853Google ScholarGoogle Scholar
  19. Steven M LaValle and James J Kuffner. 2001. Randomized Kinodynamic Planning. The International Journal of Robotics Research 20, 5 (2001), 378--400.Google ScholarGoogle ScholarCross RefCross Ref
  20. Benoît Libeau, Alain Micaelli, and Olivier Sigaud. 2009. Transfer of Knowledge for a Climbing Virtual Human: A Reinforcement Learning Approach. In Robotics and Automation, 2009. ICRA'09. IEEE International Conference on. IEEE, 2119--2124. Google ScholarGoogle ScholarCross RefCross Ref
  21. Maxim Likhachev, David I Ferguson, Geoffrey J Gordon, Anthony Stentz, and Sebastian Thrun. 2005. Anytime Dynamic A*: An Anytime, Replanning Algorithm. In ICAPS. 262--271.Google ScholarGoogle Scholar
  22. Gang Liu and KG Ramakrishnan. 2001. A* Prune: An Algorithm for Finding K Shortest Paths Subject to Multiple Constraints. In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, Vol. 2. IEEE, 743--749.Google ScholarGoogle Scholar
  23. Igor Mordatch, Emanuel Todorov, and Zoran Popović. 2012. Discovery of Complex Behaviors through Contact-Invariant Optimization. ACM Transactions on Graphics (TOG) 31, 4 (2012), 43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Giacomo Nannicini and Leo Liberti. 2008. Shortest Paths on Dynamic Graphs. International Transactions in Operational Research 15, 5 (2008), 551--563. Google ScholarGoogle ScholarCross RefCross Ref
  25. Tim Olsen, Sheldon Andrews, and Paul Kry. 2014. Computational Climbing for Physics-Based Characters. Technical Report. The ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA posters). http://cs.mcgill.ca/~sandre17/climbing/Google ScholarGoogle Scholar
  26. Mohammad Naim Rastgoo, Bahareh Nakisa, Mohammad Faidzul Nasrudin, Ahmad Nazri, and Mohd Zakree. 2014. A Critical Evaluation of Literature on Robot Path Planning in Dynamic Environment. Journal Of Theoretical And Applied Information Technology 10th 70, 1 (December 2014), 175--185.Google ScholarGoogle Scholar
  27. Liam Roditty and Uri Zwick. 2004. On Dynamic Shortest Paths Problems. In European Symposium on Algorithms. Springer, 580--591. Google ScholarGoogle ScholarCross RefCross Ref
  28. F. Sibella, I. Frosio, F. Schena, and N.A. Borghese. 2007. 3D Analysis of the Body Center of Mass in Rock Climbing. Human Movement Science 26, 6 (2007), 841 -- 852. Google ScholarGoogle ScholarCross RefCross Ref
  29. Herbert G Tanner and Amit Kumar. 2005. Towards Decentralization of Multi-Robot Navigation Functions. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation. IEEE, 4132--4137. Google ScholarGoogle ScholarCross RefCross Ref
  30. Yuval Tassa, Nicolas Mansard, and Emo Todorov. 2014. Control-Limited Differential Dynamic Programming. In Proc. ICRA 2014. IEEE, 1168--1175. Google ScholarGoogle ScholarCross RefCross Ref
  31. Steve Tonneau, Julien Pettré, and Franck Multon. 2014. Task Efficient Contact Configurations for Arbitrary Virtual Creatures. In Proceedings of Graphics Interface 2014 (GI '14). Canadian Information Processing Society, Toronto, Ont., Canada, Canada, 9--16. http://dl.acm.org/citation.cfm?id=2619648.2619652Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Dustin J Webb and Jur van den Berg. 2013. Kinodynamic RRT*: Asymptotically Optimal Motion Planning for Robots with Linear Dynamics. In Robotics and Automation (ICRA), 2013 IEEE International Conference on. IEEE, 5054--5061. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Discovering and synthesizing humanoid climbing movements

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 36, Issue 4
      August 2017
      2155 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3072959
      Issue’s Table of Contents

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 20 July 2017
      Published in tog Volume 36, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader