skip to main content
research-article
Public Access

Understanding and Exploiting Object Interaction Landscapes

Published:27 June 2017Publication History
Skip Abstract Section

Abstract

Interactions play a key role in understanding objects and scenes for both virtual and real-world agents. We introduce a new general representation for proximal interactions among physical objects that is agnostic to the type of objects or interaction involved. The representation is based on tracking particles on one of the participating objects and then observing them with sensors appropriately placed in the interaction volume or on the interaction surfaces. We show how to factorize these interaction descriptors and project them into a particular participating object so as to obtain a new functional descriptor for that object, its interaction landscape, capturing its observed use in a spatiotemporal framework. Interaction landscapes are independent of the particular interaction and capture subtle dynamic effects in how objects move and behave when in functional use. Our method relates objects based on their function, establishes correspondences between shapes based on functional key points and regions, and retrieves peer and partner objects with respect to an interaction.

Skip Supplemental Material Section

Supplemental Material

tog-31.mp4

mp4

439.5 MB

References

  1. Adobe. 2015. Mixamo. Retrieved from https://www.mixamo.com/.Google ScholarGoogle Scholar
  2. R. Ali Al-Asqhar, T. Komura, and M. Geol Choi. 2013. Relationship descriptors for interactive motion adaptation. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’13). ACM, 45--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. N. Amenta, M. Bern, and M. Kamvysselis. 1998. A new Voronoi-based surface reconstruction algorithm. In Proceedings of SIGGRAPH. ACM, New York, 415--421. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis. 2005. SCAPE: Shape completion and animation of people. In Proceedings of SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. F. G. Ashby. 1992. Multidimensional Models of Perception and Cognition. L. Erlbaum. https://books.google.com/books?id=eeQh4ESeOfsCGoogle ScholarGoogle Scholar
  6. E. Bar-Aviv and E. Rivlin. 2006. Functional 3D object classification using simulation of embodied agent. In BMVC. British Machine Vision Association, 307--316.Google ScholarGoogle Scholar
  7. I. Baran and J. Popović. 2007. Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26, 3 (July 2007), 72:1--72:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Biasotti, A. Cerri, A. Bronstein, and M. Bronstein. 2015. Recent trends, applications, and perspectives in 3D shape similarity assessment. Comp. Graph. Forum (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. W. Black and P. Taylor. 1997. Automatically clustering similar units for unit selection in speech synthesis. In Eurospeech97. 601--604.Google ScholarGoogle Scholar
  10. M. Caine. 1994. The design of shape interactions using motion constraints. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation, Vol. 1. 366--371.Google ScholarGoogle ScholarCross RefCross Ref
  11. A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. 2015. ShapeNet: An information-rich 3D model repository. ArXiv e-prints (Dec. 2015).Google ScholarGoogle Scholar
  12. Y.-W. Chao, Z. Wang, Y. He, J. Wang, and J. Deng. 2015. HICO: A benchmark for recognizing human-object interactions in images. ICCV (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung. 2003. On visual similarity based 3D model retrieval. Comp. Graph. Forum 22, 3 (2003), 223--232.Google ScholarGoogle ScholarCross RefCross Ref
  14. J. Chen, X. Ge, L.-Y. Wei, B. Wang, Y. Wang, H. Wang, Y. Fei, K.-L. Qian, J.-H. Yong, and W. Wang. 2013. Bilateral blue noise sampling. ACM Trans. Graph. 32, 6, Article 216 (Nov. 2013), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. Durrleman. 2010. Statistical Models of Currents for Measuring the Variability of Anatomical Curves, Surfaces and Their Evolution. Ph.D. dissertation. Université Nice - Sophia Antipolis, France.Google ScholarGoogle Scholar
  16. M. Fisher, M. Savva, Y. Li, P. Hanrahan, and M. Niessner. 2015. Activity-centric scene synthesis for functional 3D scene modeling. ACM Trans. Graph. 34, 6, Article 179 (Oct. 2015), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. R. Gal and D. Cohen-Or. 2006. Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25, 1 (2006), 130--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. H. Grabner, J. Gall, and L. Van Gool. 2011. What makes a chair a chair?. In CVPR. 1529--1536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Gupta, A. Kembhavi, and L. S. Davis. 2009. Observing human-object interactions: Using spatial and functional compatibility for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31, 10 (Oct. 2009), 1775--1789. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. E. S. L. Ho, T. Komura, and C.-L. Tai. 2010. Spatial relationship preserving character motion adaptation. ACM Trans. Graph. 29, 4, Article 33 (2010), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. R. Hu, O. van Kaick, B. Wu, H. Huang, A. Shamir, and H. Zhang. 2016. Learning how objects function via co-analysis of interactions. ACM Trans. Graph. 35, 4, Article 47 (July 2016), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. R. Hu, C. Zhu, O. van Kaick, L. Liu, A. Shamir, and H. Zhang. 2015. Interaction context (ICON): Towards a geometric functionality descriptor. ACM Trans. Graph. 34, 4, Article 83 (2015), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. H. Jiang and D. R. Martin. 2008. Finding actions using shape flows. In Computer Vision ECCV 2008, David Forsyth, Philip Torr, and Andrew Zisserman (Eds.). Lecture Notes in Computer Science, Vol. 5303. Springer, Berlin, 278--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Germany Karlsruhe Institute of Technology, Karlsruhe. 2015. KIT Whole Human Motion Database. Retrieved from https://motion-database.humanoids.kit.edu/.Google ScholarGoogle Scholar
  25. V. G. Kim, S. Chaudhuri, L. Guibas, and T. Funkhouser. 2014. Shape2Pose: Human-centric shape analysis. ACM Trans. Graph. 33, 4, Article 120 (2014), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. H. Laga, M. Mortara, and M. Spagnuolo. 2013. Geometry and context for semantic correspondences and functionality recognition in man-made 3D shapes. ACM Trans. Graph. 32, 5, Article 150 (2013), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. C. H. Lee, A. Varshney, and D. W. Jacobs. 2005. Mesh saliency. ACM Trans. Graph. 24, 3 (July 2005), 659--666. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. Leordeanu and M. Hebert. 2005. A spectral technique for correspondence problems using pairwise constraints. In Proceedings of the 10th IEEE International Conference on Computer Vision (ICCV’05). Vol. 2. 1482--1489. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. P. Li, B. Wang, F. Sun, X. Guo, C. Zhang, and W. Wang. 2015. Q-MAT: Computing medial axis transform by quadratic error minimization. ACM Trans. Graph. 35, 1, Article 8 (Dec. 2015), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Y. Li, J. L. Fu, and N. S. Pollard. 2007. Data-driven grasp synthesis using shape matching and task-based pruning. IEEE Trans. Vis. Comput. Graph. 13, 4 (July 2007), 732--747. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Z. Liu, C. Xie, S. Bu, X. Wang, J. Han, H. Lin, and H. Zhang. 2015. Indirect shape analysis for 3D shape retrieval. Comput. Graphics 46 (2015), 110--116. Shape Modeling International 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. N. Mitra, M. Wand, H. (Richard) Zhang, D. Cohen-Or, V. Kim, and Q.-X. Huang. 2013b. Structure-aware shape processing. In SIGGRAPH Asia 2013 Courses (SA’13). ACM, New York, Article 1, 20 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. N. J. Mitra, M. Pauly, M. Wand, and D. Ceylan. 2013a. Symmetry in 3D geometry: Extraction and applications. Comput. Graph. Forum 32, 6 (2013), 1--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. J. Monaghan. 1992. Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30 (1992), 543--574.Google ScholarGoogle Scholar
  35. O. Oreifej and Z. Liu. 2013. HON4D: Histogram of oriented 4D normals for activity recognition from depth sequences. In 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’13). 716--723. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. 2002. Shape distributions. ACM Trans. Graph. 21, 4 (Oct. 2002), 807--832. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. Guibas. 2012. Functional maps: A flexible representation of maps between shapes. ACM Trans. Graph. 31, 4 (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. M. Pechuk, O. Soldea, and E. Rivlin. 2008. Learning function-based object classification from 3D imagery. Comput. Vis. Image Underst. 110, 2 (May 2008), 173--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. E. Rivlin, S. J. Dickinson, and A, Rosenfeld. 1994. Recognition by functional parts {function-based object recognition}. In Proceedings of the 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’94). 267--274.Google ScholarGoogle ScholarCross RefCross Ref
  40. Columbia University USA Robotics Lab, Computer Science Laboratory. 2012. GraspIt! (2012). http://www.cs.columbia.edu/ cmatei/graspit/.Google ScholarGoogle Scholar
  41. Y. Rubner, C. Tomasi, and L. J. Guibas. 1998. A metric for distributions with applications to image databases. In Proceedings of the 6th International Conference on Computer Vision, 1998. 59--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. M. Savva, A. X. Chang, P. Hanrahan, M. Fisher, and M. Nießner. 2014. SceneGrok: Inferring action maps in 3D environments. ACM Trans. Graph. 33, 6, Article 212 (Nov. 2014), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. M. Savva, A. X. Chang, P. Hanrahan, M. Fisher, and M. Nießner. 2016. PiGraphs: Learning interaction snapshots from observations. ACM Trans. Graph. 35, 4, Article 139 (July 2016), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. P. Shilane and T. Funkhouser. 2007. Distinctive regions of 3D surfaces. ACM Trans. Graph. 26, 2, Article 7 (June 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. O. Sidi, O. van Kaick, Y. Kleiman, H. Zhang, and D. Cohen-Or. 2011. Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. Graph. 30, 6, Article 126 (2011), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. H. O. Song, M. Fritz, C. Gu, and T. Darrell. 2011. Visual grasp affordances from appearance-based cues. In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). 998--1005.Google ScholarGoogle Scholar
  47. M. Sutton, L. Stark, and K. Bowyer. 1994. GRUFF-3: Generalizing the domain of a function-based recognition system. Pattern Recog. 27, 12 (1994), 1743--1766.Google ScholarGoogle ScholarCross RefCross Ref
  48. A. Tevs, Q. Huang, M. Wand, H.-P. Seidel, and L. Guibas. 2014. Relating shapes via geometric symmetries and regularities. ACM Trans. Graph. 33, 4, Article 119 (July 2014), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. A. Tversky. 1977. Features of similarity. Psych. Rev. 84 (1977), 327--352.Google ScholarGoogle Scholar
  50. D. Tzionas and J. Gall. 2015. 3D object reconstruction from hand-object interactions. In Proceedings of the International Conference on Computer Vision (ICCV). http://files.is.tue.mpg.de/dtzionas/In-Hand-Scanning Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Z. Wu, S. Song, A. Khosla, X. Tang, and J. Xiao. 2014. 3D shapenets for 2.5d object recognition and next-best-view prediction. CoRR abs/1406.5670 (2014). http://arxiv.org/abs/1406.5670Google ScholarGoogle Scholar
  52. L. Xu, H. Quynh Dinh, P. Mordohai, and T. Ramsay. 2011. Detecting patterns in vector fields. 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 6 (2011).Google ScholarGoogle ScholarCross RefCross Ref
  53. X. Zhao, H. Wang, and T. Komura. 2014. Indexing 3D scenes using the interaction bisector surface. ACM Trans. Graph. 33, 3, Article 22 (2014), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Y. Zheng, D. Cohen-Or, and N. J. Mitra. 2013. Smart variations: Functional substructures for part compatibility. Comp. Graph. Forum 32, 2 pt2 (2013), 195--204.Google ScholarGoogle ScholarCross RefCross Ref
  55. Y. Zhu, A. Fathi, and L. Fei-Fei. 2014. Reasoning about object affordances in a knowledge base representation. In Computer Vision ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars (Eds.). Lecture Notes in Computer Science, Vol. 8690. Springer International Publishing, 408--424.Google ScholarGoogle Scholar

Index Terms

  1. Understanding and Exploiting Object Interaction Landscapes

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 36, Issue 3
          June 2017
          165 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3087678
          Issue’s Table of Contents

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 June 2017
          • Accepted: 1 March 2017
          • Revised: 1 January 2017
          • Received: 1 September 2016
          Published in tog Volume 36, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader