skip to main content
10.1145/3098822.3098835acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Public Access

Pretzel: Email encryption and provider-supplied functions are compatible

Published:07 August 2017Publication History

ABSTRACT

Emails today are often encrypted, but only between mail servers---the vast majority of emails are exposed in plaintext to the mail servers that handle them. While better than no encryption, this arrangement leaves open the possibility of attacks, privacy violations, and other disclosures. Publicly, email providers have stated that default end-to-end encryption would conflict with essential functions (spam filtering, etc.), because the latter requires analyzing email text. The goal of this paper is to demonstrate that there is no conflict. We do so by designing, implementing, and evaluating Pretzel. Starting from a cryptographic protocol that enables two parties to jointly perform a classification task without revealing their inputs to each other, Pretzel refines and adapts this protocol to the email context. Our experimental evaluation of a prototype demonstrates that email can be encrypted end-to-end and providers can compute over it, at tolerable cost: clients must devote some storage and processing, and provider overhead is roughly 5x versus the status quo.

Skip Supplemental Material Section

Supplemental Material

pretzelemailencryptionandprovidersuppliedfunctionsarecompatible.webm

webm

79.5 MB

References

  1. http://openpgp.org/.Google ScholarGoogle Scholar
  2. https://keybase.io.Google ScholarGoogle Scholar
  3. http://spamprobe.sourceforge.net/.Google ScholarGoogle Scholar
  4. http://spambayes.sourceforge.net/.Google ScholarGoogle Scholar
  5. http://spamassassin.apache.org/.Google ScholarGoogle Scholar
  6. http://scikit-learn.org/stable/.Google ScholarGoogle Scholar
  7. http://www.cs.waikato.ac.nz/ml/weka/.Google ScholarGoogle Scholar
  8. https://support.google.com/ads/answer/2842480?hl=en.Google ScholarGoogle Scholar
  9. https://www.gnupg.org/software/gpgme/index.html.Google ScholarGoogle Scholar
  10. https://www.sqlite.org/fts3.html.Google ScholarGoogle Scholar
  11. https://www.cs.cmu.edu/~./enron/.Google ScholarGoogle Scholar
  12. http://qwone.com/~jason/20Newsgroups/.Google ScholarGoogle Scholar
  13. http://www.daviddlewis.com/resources/testcollections/reuters21578/.Google ScholarGoogle Scholar
  14. http://email.about.com/od/emailstatistics/f/What_is_the_Average_Size_of_an_Email_Message.htm.Google ScholarGoogle Scholar
  15. http://www.gossamer-threads.com/lists/spamassassin/users/151578.Google ScholarGoogle Scholar
  16. http://users.spamassassin.apache.narkive.com/d6ppUDfw/large-scale-global-bayes-tuning.Google ScholarGoogle Scholar
  17. http://spamassassin.apache.org/full/3.4.x/doc/Mail_SpamAssassin_Conf.html.Google ScholarGoogle Scholar
  18. A survey on ring-LWE cryptography, Feb. 2016. https://www.microsoft.com/en-us/research/video/a-survey-on-ring-lwe-cryptography/.Google ScholarGoogle Scholar
  19. P. Aditya, R. Sen, P. Druschel, S. J. Oh, R. Benenson, M. Fritz, B. Schiele, B. Bhattacharjee, and T. T. Wu. I-Pic: A platform for privacy-compliant image capture. In MobiSys, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O. Killijian. XPIR: Private Information Retrieval for Everyone. In PETS, 2016.Google ScholarGoogle Scholar
  21. A. Amirbekyan and V. Estivill-Castro. A new efficient privacy-preserving scalar product protocol. In Australasian conference on Data mining and analytics (AusDM), 2007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. I. Androutsopoulos, J. Koutsias, K. Chandrinos, G. Paliouras, and C. Spyropoulos. An evaluation of Naive Bayesian anti-spam filtering. In Workshop on Machine Learning in the New Information Age, 2000.Google ScholarGoogle Scholar
  23. Apple. Our Approach to Privacy. http://www.apple.com/privacy/approach-to-privacy/.Google ScholarGoogle Scholar
  24. M. L. G. at National Taiwan University. LIBLINEAR--A library for large linear classification. https://www.csie.ntu.edu.tw/~cjlin/liblinear/.Google ScholarGoogle Scholar
  25. M. J. Atallah and W. Du. Secure multi-party computational geometry. In Workshop on Algorithms and Data Structures (WADS). 2001. Google ScholarGoogle ScholarCross RefCross Ref
  26. M. Ball, T. Malkin, and M. Rosulek. Garbling gadgets for boolean and arithmetic circuits. In ACM CCS, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. D. Beeby. Rogue tax workers snooped on ex-spouses, family members. Toronto Star, June 2010. https://www.thestar.com/news/canada/2010/06/20/rogue_tax_workers_snooped_on_exspouses_family_members.html.Google ScholarGoogle Scholar
  28. E. Betters. What is Google Assistant, how does it work, and when can you use it?, Sept. 2016. http://www.pocket-lint.com/news/137722-what-is-google-assistant-how-does-it-work-and-when-can-you-use-it.Google ScholarGoogle Scholar
  29. B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and F. Roli. Evasion attacks against machine learning at test time. In ECML-PKDD, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. Blanton and P. Gasti. Secure and efficient protocols for iris and fingerprint identification. In ESORICS, 2011. Google ScholarGoogle ScholarCross RefCross Ref
  31. J. Bonneau. EthIKS: Using Ethereum to audit a CONIKS key transparency log. In FC, 2016.Google ScholarGoogle Scholar
  32. B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In Wkshp on Computational Learning Theory (COLT), 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine learning classification over encrypted data. In NDSS, 2014.Google ScholarGoogle Scholar
  34. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security for key dependent messages. In CRYPTO, 2011. Google ScholarGoogle ScholarCross RefCross Ref
  35. L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and regression trees. CRC press, 1984.Google ScholarGoogle Scholar
  36. J. Bringer, O. El Omri, C. Morel, and H. Chabanne. Boosting GSHADE capabilities: New applications and security in malicious setting. In Symposium on Access Control Models and Technologies (SACMAT), 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. OpenPGP message format. RFC 4880, IETF, 2007.Google ScholarGoogle Scholar
  38. Y.-T. Chiang, D.-W. Wang, C.-J. Liau, and T.-s. Hsu. Secrecy of two-party secure computation. In IFIP DBSec. 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. P. Ciano. How to use Google Now, Mar. 2014. https://paulciano.org/2014/03/getting-google-now/.Google ScholarGoogle Scholar
  40. M. Cohen. Web storage overview. https://developers.google.com/web/fundamentals/instant-and-offline/web-storage/.Google ScholarGoogle Scholar
  41. K. Conger. Google engineer says he'll push for default end-to-end encryption in Allo, May 2016. https://techcrunch.com/2016/05/19/google-engineer-says-hell-push-for-default-end-to-end-encryption-in-allo/.Google ScholarGoogle Scholar
  42. K. Conger. Google's Allo won't include end-to-end encryption by default, May 2016. https://techcrunch.com/2016/05/18/googles-allo-wont-include-end-to-end-encryption-by-default/.Google ScholarGoogle Scholar
  43. J. Corbet. The grumpy editor's guide to bayesian spam filters, 2006. https://lwn.net/Articles/172491/.Google ScholarGoogle Scholar
  44. G. V. Cormack. TREC 2007 spam track overview. In TREC, 2007.Google ScholarGoogle Scholar
  45. C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273--297, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. R. De Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede. Efficient software implementation of ring-LWE encryption. In Design, Automation & Test in Europe (DATE), 2015. Google ScholarGoogle ScholarCross RefCross Ref
  47. T. Dierks and E. Rescorla. The transport layer security (TLS) protocol version 1.2. RFC 5246, Network Working Group, 2008.Google ScholarGoogle Scholar
  48. W. Diffie and M. Hellman. New directions in cryptography. IEEE transactions on Information Theory, 22(6):644--654, 1976. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. J. Dizon. Gmail can now automatically put flight, hotel, ticket, or restaurant info on Google calendar, Aug. 2015. http://www.techtimes.com/articles/79380/20150826/gmail-can-now-automatically-put-flight-hotel-ticket-or-restaurant-info-on-google-calendar.htm.Google ScholarGoogle Scholar
  50. Y. Dodis, R. Gennaro, J. Håstad, H. Krawczyk, and T. Rabin. Randomness extraction and key derivation using the CBC, cascade and HMAC modes. In CRYPTO, 2004. Google ScholarGoogle ScholarCross RefCross Ref
  51. C. Dong and L. Chen. A fast secure dot product protocol with application to privacy preserving association rule mining. In PAKDD, 2014. Google ScholarGoogle ScholarCross RefCross Ref
  52. W. Du and M. J. Atallah. Protocols for secure remote database access with approximate matching. In E-Commerce Security and Privacy, 2001. Google ScholarGoogle ScholarCross RefCross Ref
  53. W. Du and Z. Zhan. Building decision tree classifier on private data. In Intl. Conf. on Data Mining Wkshp on Privacy, Security and Data Mining (PSDM), 2002.Google ScholarGoogle Scholar
  54. W. Du and Z. Zhan. A practical approach to solve secure multi-party computation problems. In New security paradigms workshop (NSPW), 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. T. Duong. Security and privacy in Google Allo, May 2016. https://vnhacker.blogspot.com/2016/05/security-and-privacy-in-google-allo.html.Google ScholarGoogle Scholar
  56. Z. Durumeric, D. Adrian, A. Mirian, J. Kasten, E. Bursztein, N. Lidzborski, K. Thomas, V. Eranti, M. Bailey, and J. A. Halderman. Neither snow nor rain nor MITM...: An empirical analysis of email delivery security. In IMC, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. JMLR, 9(Aug):1871--1874, 2008.Google ScholarGoogle Scholar
  58. L. Franceschi-Bicchierai. Even the inventor of PGP doesn't use PGP, 2015. http://motherboard.vice.com/read/even-the-inventor-of-pgp-doesnt-use-pgp.Google ScholarGoogle Scholar
  59. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. In CRYPTO. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen. On private scalar product computation for privacy-preserving data mining. In Intl. Conf. on Information Security and Cryptology (ICISC). 2004.Google ScholarGoogle Scholar
  61. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. J. Goodman and W.-t. Yih. Online discriminative spam filter training. In Conf. on Email and Anti-Spam (CEAS), 2006.Google ScholarGoogle Scholar
  63. Google. https://github.com/google/end-to-end.Google ScholarGoogle Scholar
  64. Google. Google transparency report. https://www.google.com/transparencyreport/userdatarequests/US/.Google ScholarGoogle Scholar
  65. Google. How Gmail ads work. https://support.google.com/mail/answer/6603?hl=en.Google ScholarGoogle Scholar
  66. S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, and Y. Vahlis. Secure two-party computation in sublinear (amortized) time. In ACM CCS, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. J. Gould. The natural history of Gmail data mining. Gmail isn't really about email---it's a gigantic profiling machine. Medium, June 2014. https://medium.com/@jeffgould/the-natural-history-of-gmail-data-mining-be115d196b10.Google ScholarGoogle Scholar
  68. P. Graham. A plan for spam, 2002. http://www.paulgraham.com/spam.html.Google ScholarGoogle Scholar
  69. P. Graham. Better Bayesian filtering, 2003. http://www.paulgraham.com/better.html.Google ScholarGoogle Scholar
  70. T. Gupta, H. Fingler, L. Alvisi, and M. Walfish. Pretzel: Email encryption and provider-supplied functions are compatible (extended version). arXiv preprint arXiv:1612.04265, 2016.Google ScholarGoogle Scholar
  71. J. Huang, J. Lu, and C. X. Ling. Comparing Naive Bayes, decision trees, and SVM with AUC and accuracy. In Intl. Conf. on Data Mining (ICDM), 2003. Google ScholarGoogle ScholarCross RefCross Ref
  72. Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using garbled circuits. In USENIX Security, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Y. Huang, J. Katz, and D. Evans. Quid-pro-quo-tocols: Strengthening semi-honest protocols with dual execution. In IEEE S&P, 2012.Google ScholarGoogle Scholar
  74. Y. Huang, Z. Lu, et al. Privacy preserving association rule mining with scalar product. In International Conference on Natural Language Processing and Knowledge Engineering (NLP-KE), 2005.Google ScholarGoogle Scholar
  75. Y. Huang, L. Malka, D. Evans, and J. Katz. Efficient privacy-preserving biometric identification. In NDSS, 2011.Google ScholarGoogle Scholar
  76. I. Ioannidis, A. Grama, and M. Atallah. A secure protocol for computing dot-products in clustered and distributed environments. In International Conference on Parallel Processing (ICPP), 2002. Google ScholarGoogle ScholarCross RefCross Ref
  77. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In CRYPTO, 2003. Google ScholarGoogle ScholarCross RefCross Ref
  78. T. Joachims. Text categorization with Support Vector Machines: Learning with many relevant features. In ECML, 1998.Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. C. Kaleli and H. Polat. Providing Naïve Bayesian classifier-based private recommendations on partitioned data. In PKDD, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. J.-S. Kang and D. Hong. On fast private scalar product protocols. In Security Technology (SecTech). 2011. Google ScholarGoogle ScholarCross RefCross Ref
  81. M. Keller, E. Orsini, and P. Scholl. Actively secure OT extension with optimal overhead. In CRYPTO, 2015. Google ScholarGoogle ScholarCross RefCross Ref
  82. A. Khedr, G. Gulak, and V. Vaikuntanathan. SHIELD: Scalable homomorphic implementation of encrypted data-classifiers. IEEE Transactions on Computers, 65(9):2848--2858, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. B. Kreuter, A. Shelat, and C.-H. Shen. Billion-gate secure computation with malicious adversaries. In USENIX Security, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. S. Laur and H. Lipmaa. On private similarity search protocols. In Nordic Workshop on Secure IT Systems (NordSec), 2004.Google ScholarGoogle Scholar
  85. D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark collection for text categorization research. JMLR, 5(Apr):361--397, 2004.Google ScholarGoogle Scholar
  86. C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region Newton method for logistic regression. JMLR, 9(Apr):627--650, 2008.Google ScholarGoogle Scholar
  87. Y. Lindell. Fast cut-and-choose-based protocols for malicious and covert adversaries. Journal of Cryptology, 29(2):456--490, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Y. Lindell and B. Pinkas. A proof of security of Yao's protocol for two-party computation. Journal of Cryptology, 22(2):161--188, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. X. Liu, R. Lu, J. Ma, L. Chen, and B. Qin. Privacy-preserving patient-centric clinical decision support system on Naive Bayesian classification. IEEE Journal of Biomedical and Health Informatics, 20(2):655--668, 2016. Google ScholarGoogle ScholarCross RefCross Ref
  90. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings. In EUROCRYPT, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-LWE cryptography. In EUROCRYPT, 2013. Google ScholarGoogle ScholarCross RefCross Ref
  92. A. McCallum, K. Nigam, et al. A comparison of event models for Naive Bayes text classification. In AAAI workshop on learning for text categorization, 1998.Google ScholarGoogle Scholar
  93. M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J. Freedman. CONIKS: Bringing key transparency to end users. In USENIX Security, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. R. C. Merkle. Secure communications over insecure channels. Communications of the ACM, 21(4):294--299, Apr. 1978. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. V. Metsis, I. Androutsopoulos, and G. Paliouras. Spam filtering with Naive Bayes--which Naive Bayes? In Conf. on Email and Anti-Spam (CEAS), 2006.Google ScholarGoogle Scholar
  96. T. Meyer. No warrant, no problem: How the government can get your digital data. ProPublica, June 2014. https://www.propublica.org/special/no-warrant-no-problem-how-the-government-can-still-get-your-digital-data/.Google ScholarGoogle Scholar
  97. Microsoft. Law enforcement requests report. https://www.microsoft.com/about/csr/transparencyhub/lerr/.Google ScholarGoogle Scholar
  98. A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. In NIPS, 2001.Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT, 1999. Google ScholarGoogle ScholarCross RefCross Ref
  100. M. A. Pathak, M. Sharifi, and B. Raj. Privacy preserving spam filtering. arXiv preprint arXiv:1102.4021, 2011.Google ScholarGoogle Scholar
  101. C. Peikert. How (not) to instantiate ring-LWE. In Conference on Security and Cryptography for Networks (SCN), 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. S. Perez. Microsoft's Cortana can now create reminders from your emails, Feb. 2017. https://techcrunch.com/2017/02/09/microsofts-cortana-can-now-create-reminders-from-your-emails/.Google ScholarGoogle Scholar
  103. K. Poulsen. Five IRS employees charged with snooping on tax returns. Wired, May 2008. https://www.wired.com/2008/05/five-irs-employ/.Google ScholarGoogle Scholar
  104. G. Robinson. A statistical approach to the spam problem. Linux Journal, Mar. 2003. http://www.linuxjournal.com/article/6467.Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede. Compact ring-LWE cryptoprocessor. In International Workshop on Cryptographic Hardware and Embedded Systems (CHES), 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-preserving face recognition. In Intl. Conf. on Information Security and Cryptology (ICISC), 2009.Google ScholarGoogle Scholar
  107. A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-preserving face recognition (full version). Cryptology ePrint Archive, Report 507, 2009.Google ScholarGoogle Scholar
  108. D. Sculley and G. Wachman. Relaxed online SVMs in the TREC spam filtering track. In TREC, 2007.Google ScholarGoogle Scholar
  109. D. Sculley and G. M. Wachman. Relaxed online SVMs for spam filtering. In ACM SIGIR Conference, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. R. Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of the European Association for Theoretical Computer Science (EATCS), 77(67-95):10, 2002.Google ScholarGoogle Scholar
  111. M. Shaneck and Y. Kim. Efficient cryptographic primitives for private data mining. In Hawaii Intl. Conf. on System Sciences (HICSS), 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. C. Soghoian. Two honest Google employees: our products don't protect your privacy, Nov. 2011. http://paranoia.dubfire.net/2011/11/two-honest-google-employees-our.html.Google ScholarGoogle Scholar
  113. S. Somogyi. Making end-to-end encryption easier to use. Google Security Blog, June 2014. https://security.googleblog.com/2014/06/making-end-to-end-encryption-easier-to.html.Google ScholarGoogle Scholar
  114. E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and F. Koushanfar. TinyGarble: Highly compressed and scalable sequential garbled circuits. In IEEE S&P, 2015.Google ScholarGoogle Scholar
  115. A. Stamos. User-focused security: End-to-end encryption extension for Yahoo Mail. Yahoo Tumblr Blog, Mar. 2015. https://yahoo.tumblr.com/post/113708033335/user-focused-security-end-to-end-encryption.Google ScholarGoogle Scholar
  116. B. Tang, S. Kay, and H. He. Toward optimal feature selection in Naive Bayes for text categorization. IEEE Transactions on Knowledge and Data Engineering, 28(9):2508--2521, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Stealing machine learning models via prediction APIs. In USENIX Security, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. D. Trincă and S. Rajasekaran. Fast cryptographic multi-party protocols for computing boolean scalar products with applications to privacy-preserving association rule mining in vertically partitioned data. In Data Warehousing and Knowledge Discovery (DaWaK). 2007. Google ScholarGoogle ScholarCross RefCross Ref
  119. S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich. Processing analytical queries over encrypted data. PVLDB, 6(5):289--300, Mar. 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. J. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically partitioned data. In KDD, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. J. Vaidya, M. Kantarcıoğlu, and C. Clifton. Privacy-preserving Naive Bayes classification. The VLDB Journal, 17(4):879--898, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. J. Vaidya, B. Shafiq, A. Basu, and Y. Hong. Differentially private Naive Bayes classification. In IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. J. Vaidya, H. Yu, and X. Jiang. Privacy-preserving SVM classification. Knowledge and Information Systems, 14(2):161--178, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. L. Vanderkam. Stop checking your email, now. Fortune, Oct. 2012. http://fortune.com/2012/10/08/stop-checking-your-email-now/.Google ScholarGoogle Scholar
  125. N. Šrndic and P. Laskov. Practical evasion of a learning-based classifier: A case study. In IEEE S&P, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. WhatsApp. WhatsApp FAQ - End-to-End Encryption. https://www.whatsapp.com/faq/en/general/28030015.Google ScholarGoogle Scholar
  127. Wikipedia. 2016 Democratic National Committee email leak, 2014. https://en.wikipedia.org/wiki/2016_Democratic_National_Committee_email_leak.Google ScholarGoogle Scholar
  128. Wikipedia. Sony pictures hack, 2014. https://en.wikipedia.org/wiki/Sony_Pictures_hack.Google ScholarGoogle Scholar
  129. R. Wright and Z. Yang. Privacy-preserving Bayesian network structure computation on distributed heterogeneous data. In KDD, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. Yahoo! https://github.com/yahoo/end-to-end.Google ScholarGoogle Scholar
  131. Yahoo! Transparency report: Overview. https://transparency.yahoo.com/.Google ScholarGoogle Scholar
  132. Z. Yang, S. Zhong, and R. N. Wright. Privacy-preserving classification of customer data without loss of accuracy. In SIAM International Conference on Data Mining (SDM), 2005. Google ScholarGoogle ScholarCross RefCross Ref
  133. A. C. Yao. Protocols for secure computations. In Symposium on Foundations of Computer Science (SFCS), 1982. Google ScholarGoogle ScholarCross RefCross Ref
  134. X. Yi and Y. Zhang. Privacy-preserving Naive Bayes classification on distributed data via semi-trusted mixers. Info. Systems, 34(3):371--380, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. H. Yu, X. Jiang, and J. Vaidya. Privacy-preserving SVM using nonlinear kernels on horizontally partitioned data. In ACM Symposium on Applied Computing (SAC), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. H. Yu, J. Vaidya, and X. Jiang. Privacy-preserving SVM classification on vertically partitioned data. In PAKDD, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  137. S. Zahur and D. Evans. Obliv-C: A language for extensible data-oblivious computation. Cryptology ePrint Archive, Report 1153, 2015.Google ScholarGoogle Scholar
  138. S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole. In EUROCRYPT. 2015. Google ScholarGoogle ScholarCross RefCross Ref
  139. S. Zahur, X. Wang, M. Raykova, A. Gascón, J. Doerner, D. Evans, and J. Katz. Revisiting square-root ORAM efficient random access in multi-party computation. In IEEE S&P, 2016. Google ScholarGoogle ScholarCross RefCross Ref
  140. K. Zetter. Ex-Googler allegedly spied on user e-mails, chats, Sept. 2010. https://www.wired.com/2010/09/google-spy/.Google ScholarGoogle Scholar
  141. H. Zhang. The optimality of Naive Bayes. AA, 1(2):3, 2004.Google ScholarGoogle Scholar
  142. P. Zhang, Y. Tong, S. Tang, and D. Yang. Privacy preserving Naive Bayes classification. In Advanced Data Mining and Applications (ADMA). 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. Y. Zhu, Z. Wang, B. Hassan, Y. Zhang, J. Wang, and C. Qian. Fast secure scalar product protocol with (almost) optimal efficiency. In Collaborative Computing: Networking, Applications, and Worksharing (CollaborateCom). 2015.Google ScholarGoogle Scholar
  144. P. R. Zimmermann. The official PGP user's guide. MIT press, 1995.Google ScholarGoogle Scholar

Index Terms

  1. Pretzel: Email encryption and provider-supplied functions are compatible

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SIGCOMM '17: Proceedings of the Conference of the ACM Special Interest Group on Data Communication
          August 2017
          515 pages
          ISBN:9781450346535
          DOI:10.1145/3098822

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 August 2017

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          Overall Acceptance Rate554of3,547submissions,16%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader