skip to main content
10.1145/3099564.3099576acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

Designing cable-driven actuation networks for kinematic chains and trees

Published: 28 July 2017 Publication History

Abstract

In this paper we present an optimization-based approach for the design of cable-driven kinematic chains and trees. Our system takes as input a hierarchical assembly consisting of rigid links jointed together with hinges. The user also specifies a set of target poses or keyframes using inverse kinematics. Our approach places torsional springs at the joints and computes a cable network that allows us to reproduce the specified target poses. We start with a large set of cables that have randomly chosen routing points and we gradually remove the redundancy. Then we refine the routing points taking into account the path between poses or keyframes in order to further reduce the number of cables and minimize required control forces. We propose a reduced coordinate formulation that links control forces to joint angles and routing points, enabling the co-optimization of a cable network together with the required actuation forces. We demonstrate the efficacy of our technique by designing and fabricating a cable-driven, animated character, an animatronic hand, and a specialized gripper.

Supplementary Material

ZIP File (a15-megaro.zip)
Supplemental files.

References

[1]
2016. RoBoy. http://roboy.org. (2016). Accessed: 2016-12-28.
[2]
2016. Sparky, http://rasc.usc.edu/sparky.html. (2016). Accessed: 2016-12-28.
[3]
Moritz Bächer, Bernd Bickel, Doug L. James, and Hanspeter Pfister. 2012. Fabricating Articulated Characters from Skinned Meshes. ACM Trans. Graph. 31, 4, Article 47 (July 2012), 9 pages.
[4]
Moritz Bächer, Stelian Coros, and Bernhard Thomaszewski. 2015. LinkEdit: Interactive Linkage Editing Using Symbolic Kinematics. ACM Trans. Graph. 34, 4, Article 99 (July 2015), 8 pages.
[5]
Saeed Behzadipour. 2005. Ultra-high-speed Cable-based Robots. Ph.D. Dissertation. University of Waterloo.
[6]
G. Borghesan, G. Palli, and C. Melchiorri. 2010. Design of tendon-driven robotic fingers: Modeling and control issues. In 2010 IEEE International Conference on Robotics and Automation. 793--798.
[7]
Joshua T Bryson, Xin Jin, and Sunil K Agrawal. 2016. Configuration Robustness Analysis of the Optimal Design of Cable-Driven Manipulators. Journal of Mechanisms and Robotics 8, 6 (Dec. 2016), 061006.
[8]
D. B. Camarillo, C. F. Milne, C. R. Carlson, M. R. Zinn, and J. K. Salisbury. 2008. Mechanics Modeling of Tendon-Driven Continuum Manipulators. IEEE Transactions on Robotics 24, 6 (Dec 2008), 1262--1273.
[9]
M. G. Catalano, G. Grioli, A. Serio, E. Farnioli, C. Piazza, and A. Bicchi. 2012. Adaptive synergies for a humanoid robot hand. In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012). 7--14.
[10]
Duygu Ceylan, Wilmot Li, Niloy J. Mitra, Maneesh Agrawala, and Mark Pauly. 2013. Designing and Fabricating Mechanical Automata from Mocap Sequences. ACM Trans. Graph. 32, 6, Article 186 (Nov. 2013), 11 pages.
[11]
S Clutterbuck and J Jacobs. 2010. A physically based approach to virtual character deformations. In ACM SIGGRAPH.
[12]
Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira Forberg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Computational Design of Mechanical Characters. ACM Trans. Graph. 32, 4, Article 83 (July 2013), 12 pages.
[13]
S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. 2007. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Transactions on Biomedical Engineering 54, 11 (Nov 2007), 1940--1950.
[14]
Tao Du, Adriana Schulz, Bo Zhu, Bernd Bickel, and Wojciech Matusik. 2016. Computational Multicopter Design. ACM Trans. Graph. 35, 6, Article 227 (Nov. 2016), 10 pages.
[15]
Jeremie Dumas, An Lu, Sylvain Lefebvre, Jun Wu, and Christian Dick. 2015. By-Example Synthesis of Structurally Sound Patterns. ACM Trans. Graph. 34, 4 (July 2015), 12.
[16]
Shiqing Fang, D. Franitza, M. Torlo, F. Bekes, and M. Hiller. 2004. Motion control of a tendon-based parallel manipulator using optimal tension distribution. IEEE/ASME Transactions on Mechatronics 9, 3 (Sept 2004), 561--568.
[17]
Markus Grebenstein. 2014. Approaching Human Performance. Springer International Publishing.
[18]
Brian Guenter. 2007. Efficient Symbolic Differentiation for Graphics Applications. ACM Trans. Graph. 26, 3, Article 108 (July 2007).
[19]
B. Hannaford, J. Rosen, D. W. Friedman, H. King, P. Roan, L. Cheng, D. Glozman, J. Ma, S. N. Kosari, and L. White. 2013. Raven-II: An Open Platform for Surgical Robotics Research. IEEE Transactions on Biomedical Engineering 60, 4 (April 2013), 954--959.
[20]
Martin Kilian, Aron Monszpart, and Niloy J. Mitra. 2017. String Actuated Curved Folded Surfaces. ACM Transactions on Graphics (to appear) (2017).
[21]
R. R. Ma, L. U. Odhner, and A. M. Dollar. 2013. A modular, open-source 3D printed underactuated hand. In 2013 IEEE International Conference on Robotics and Automation. 2737--2743.
[22]
Jonàs Martínez, Jérémie Dumas, Sylvain Lefebvre, and Li-Yi Wei. 2015. Structure and Appearance Optimization for Controllable Shape Design. ACM Trans. Graph. 34, 6, Article 229 (Oct. 2015), 11 pages.
[23]
Vittorio Megaro, Bernhard Thomaszewski, Damien Gauge, Eitan Grinspun, Stelian Coros, and Markus Gross. 2014. ChaCra: An Interactive Design System for Rapid Character Crafting. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '14). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 123--130.
[24]
K. Mitsui, R. Ozawa, and T. Kou. 2013. An under-actuated robotic hand for multiple grasps. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. 5475--5480.
[25]
I. Mizuuchi, R. Tajima, T Yoshikai, D. Sato, K. Nagashima, M. Inaba, Y. Kuniyoshi, and H. Inoue. 2002. The design and control of the flexible spine of a fully tendon-driven humanoid "Kenta". In IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 3. 2527--2532 vol.3.
[26]
R. Ozawa, K. Hashirii, and H. Kobayashi. 2009. Design and control of underactuated tendon-driven mechanisms. In 2009 IEEE International Conference on Robotics and Automation. 1522--1527.
[27]
Veljko Potkonjak, Bratislav Svetozarevic, Kosta Jovanovic, and Owen Holland. 2011. The Puller-Follower Control of Compliant and Noncompliant Antagonistic Tendon Drives in Robotic Systems. International Journal of Advanced Robotic Systems 8, 5 (2011), 69.
[28]
Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung. 2013. Make It Stand: Balancing Shapes for 3D Fabrication. ACM Trans. Graph. 32, 4, Article 81 (July 2013), 10 pages.
[29]
Brian Rooks. 2006. The harmonious robot. Industrial Robot: An International Journal 33, 2 (2006), 125--130.
[30]
Nicholas Roy, Paul Newman, and Siddhartha Srinivasa. 2013. Tendon-Driven Variable Impedance Control Using Reinforcement Learning. MIT Press, 504--.
[31]
D. C. Rucker and R. J. Webster III. 2011. Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading. IEEE Transactions on Robotics 27, 6 (Dec 2011), 1033--1044.
[32]
Prashant Sachdeva, Shinjiro Sueda, Susanne Bradley, Mikhail Fain, and Dinesh K. Pai. 2015. Biomechanical Simulation and Control of Hands and Tendinous Systems. ACM Trans. Graph. 34, 4, Article 42 (July 2015), 10 pages.
[33]
D. Sawada and R. Ozawa. 2012. Joint control of tendon-driven mechanisms with branching tendons. In 2012 IEEE International Conference on Robotics and Automation. 1501--1507.
[34]
Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus Gross. 2013. Computational design of actuated deformable characters. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH) 32, 4 (July 2013), 82:1--82:10.
[35]
A. T. Spröwitz, M. Ajallooeian, A. Tuleu, and A.J. Ijspeert. 2014. Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH) 8 (2014).
[36]
Shinjiro Sueda, Garrett L. Jones, David I. W. Levin, and Dinesh K. Pai. 2011. Large-scale Dynamic Simulation of Highly Constrained Strands. ACM Trans. Graph. 30, 4, Article 39 (July 2011), 10 pages.
[37]
Shinjiro Sueda, Andrew Kaufman, and Dinesh K. Pai. 2008. Musculotendon Simulation for Hand Animation. ACM Trans. Graph. 27, 3, Article 83 (Aug. 2008), 8 pages.
[38]
Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan Grinspun, and Markus Gross. 2014. Computational Design of Linkage-based Characters. ACM Trans. Graph. 33, 4, Article 64 (July 2014), 9 pages.
[39]
J. P. Whitney, M. F. Glisson, E. L. Brockmeyer, and J. K. Hodgins. 2014. A low-friction passive fluid transmission and fluid-tendon soft actuator. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2801--2808.
[40]
Andrew Witkin and Michael Kass. 1988. Spacetime Constraints. SIGGRAPH Comput. Graph. 22, 4 (June 1988), 159--168.
[41]
Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping Wang, and Baining Guo. 2012. Motion-guided Mechanical Toy Modeling. ACM Trans. Graph. 31, 6, Article 127 (Nov. 2012), 10 pages.

Cited By

View all
  • (2024)Task-defined Pulley Design for Nonlinearly Coupled Tendon-driven Actuation2024 IEEE 7th International Conference on Soft Robotics (RoboSoft)10.1109/RoboSoft60065.2024.10522021(220-227)Online publication date: 14-Apr-2024
  • (2024)How Far Can a 1-Pixel Camera Go? Solving Vision Tasks Using Photoreceptors and Computationally Designed Visual MorphologyComputer Vision – ECCV 202410.1007/978-3-031-72904-1_27(458-476)Online publication date: 21-Nov-2024
  • (2023)Simulating tentacle Creature with External Magnetism for AnimatronicsJournal of the Korea Computer Graphics Society10.15701/kcgs.2023.29.5.129:5(1-9)Online publication date: 1-Dec-2023
  • Show More Cited By

Index Terms

  1. Designing cable-driven actuation networks for kinematic chains and trees

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SCA '17: Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation
    July 2017
    212 pages
    ISBN:9781450350914
    DOI:10.1145/3099564
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 28 July 2017

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Research-article

    Funding Sources

    • European Commission, Horizon 2020 Framework Programme

    Conference

    SCA '17
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 183 of 487 submissions, 38%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)64
    • Downloads (Last 6 weeks)5
    Reflects downloads up to 02 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Task-defined Pulley Design for Nonlinearly Coupled Tendon-driven Actuation2024 IEEE 7th International Conference on Soft Robotics (RoboSoft)10.1109/RoboSoft60065.2024.10522021(220-227)Online publication date: 14-Apr-2024
    • (2024)How Far Can a 1-Pixel Camera Go? Solving Vision Tasks Using Photoreceptors and Computationally Designed Visual MorphologyComputer Vision – ECCV 202410.1007/978-3-031-72904-1_27(458-476)Online publication date: 21-Nov-2024
    • (2023)Simulating tentacle Creature with External Magnetism for AnimatronicsJournal of the Korea Computer Graphics Society10.15701/kcgs.2023.29.5.129:5(1-9)Online publication date: 1-Dec-2023
    • (2023)Optimal Design of Robotic Character KinematicsACM Transactions on Graphics10.1145/361840442:6(1-15)Online publication date: 5-Dec-2023
    • (2021)Automated Routing of Muscle Fibers for Soft RobotsIEEE Transactions on Robotics10.1109/TRO.2020.304365437:3(996-1008)Online publication date: Jun-2021
    • (2021)Muscle Path Wrapping on Arbitrary SurfacesIEEE Transactions on Biomedical Engineering10.1109/TBME.2020.300992268:2(628-638)Online publication date: Feb-2021
    • (2021)Modeling and Stiffness Evaluation Of Tendon-Driven Robot For Collaborative Human-Robot Interaction2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR)10.1109/ISR50024.2021.9419387(233-238)Online publication date: 4-Mar-2021
    • (2021)Design and Control of Soft Robots Using Differentiable SimulationCurrent Robotics Reports10.1007/s43154-021-00052-7Online publication date: 10-May-2021
    • (2020)Optimizing Robotic Cheetah Leg Parameters Using Evolutionary AlgorithmsBioinspired Optimization Methods and Their Applications10.1007/978-3-030-63710-1_17(214-227)Online publication date: 16-Nov-2020
    • (2020)Modelling and Investigation of a Compliant Cable-Driven Finger-Like MechanismMicroactuators, Microsensors and Micromechanisms10.1007/978-3-030-61652-6_4(36-47)Online publication date: 14-Oct-2020
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media