skip to main content
10.1145/3107411.3107489acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
short-paper
Open Access

Deep Recurrent Conditional Random Field Network for Protein Secondary Prediction

Published:20 August 2017Publication History

ABSTRACT

Deep learning has become the state-of-the-art method for predicting protein secondary structure from only its amino acid residues and sequence profile. Building upon these results, we propose to combine a bi-directional recurrent neural network (biRNN) with a conditional random field (CRF), which we call the biRNN-CRF. The biRNN-CRF may be seen as an improved alternative to an auto-regressive uni-directional RNN where predictions are performed sequentially conditioning on the prediction in the previous time-step. The CRF is instead nearest neighbor-aware and models for the joint distribution of the labels for all time-steps. We condition the CRF on the output of biRNN, which learns a distributed representation based on the entire sequence. The biRNN-CRF is therefore close to ideally suited for the secondary structure task because a high degree of cross-talk between neighboring elements can be expected. We validate the model on several benchmark datasets. For example, on CB513, a model with 1.7 million parameters, achieves a Q8 accuracy of 69.4 for single model and 70.9 for ensemble, which to our knowledge is state-of-the-art.

References

  1. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Gordon Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. 2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. CoRR abs/1603.04467 (2016). https://arxiv.org/abs/1603.04467 Software available from tensorflow.org.Google ScholarGoogle Scholar
  2. D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel, L. Fan, C. Fougner, T. Han, A. Hannun, B. Jun, P. LeGresley, L. Lin, S. Narang, A. Ng, S. Ozair, R. Prenger, J. Raiman, S. Satheesh, D. Seetapun, S. Sengupta, Y. Wang, Z. Wang, C. Wang, B. Xiao, D. Yogatama, J. Zhan, and Z. Zhu. 2015. Deep Speech 2: End-to- End Speech Recognition in English and Mandarin. CoRR abs/1512.02595 (2015). http://arxiv.org/abs/1512.02595Google ScholarGoogle Scholar
  3. J. Ba, J. Kiros, and G. Hinton. 2016. Layer normalization. arXiv preprint arXiv:1607.06450 (2016).Google ScholarGoogle Scholar
  4. D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural Machine Translation by Jointly Learning to Align and Translate. CoRR abs/1409.0473 (2014). https://arxiv.org/abs/1409.0473Google ScholarGoogle Scholar
  5. C. Bishop. 2006. Pattern recognition and machine learning. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Busia, J. Collins, and N. Jaitly. 2016. Protein Secondary Structure Prediction Using Deep Multi-scale Convolutional Neural Networks and Next-Step Conditioning. CoRR abs/1611.01503 (2016). http://arxiv.org/abs/1611.01503Google ScholarGoogle Scholar
  7. K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio. 2014. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In Conference on Empirical Methods in Natural Language Processing (EMNLP 2014).Google ScholarGoogle Scholar
  8. F. Chollet. 2015. Keras: Theano-based deep learning library. (2015). https://github.com/fchollet/kerasGoogle ScholarGoogle Scholar
  9. J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. CoRR abs/1412.3555 (2014). http://arxiv.org/abs/1412.3555Google ScholarGoogle Scholar
  10. X. Glorot, A. Bordes, and Y. Bengio. 2011. Deep Sparse Rectifier Neural Networks. In Aistats, Vol. 15. 275.Google ScholarGoogle Scholar
  11. A. Graves. 2012. Supervised sequence labelling with recurrent neural networks. Springer (2012).Google ScholarGoogle Scholar
  12. K. He, X. Zhang, S. Ren, and J. Sun. 2015. Deep Residual Learning for Image Recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385Google ScholarGoogle Scholar
  13. S. Hochreiter and J. Schmidhuber. 1997. Long Short-Term Memory. Neural Comput. 9, 8 (Nov. 1997), 1735--1780. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. D. Jones. 1999. Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology 292, 2 (1999), 195 -- 202.Google ScholarGoogle ScholarCross RefCross Ref
  15. D. Kingma and J. Ba. 2015. Adam: A method for stochastic optimization. International Conference on Learning Representation.Google ScholarGoogle Scholar
  16. A. Krizhevsky, I. Sutskever, and G. Hinton. 2012. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 1097--1105. http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of the Eighteenth International Conference on Machine Learning (ICML '01). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 282--289. http://dl.acm.org/citation.cfm?id=645530.655813 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Y. LeCun, Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436--444.Google ScholarGoogle Scholar
  19. Z. Li and Y. Yu. 2016. Protein Secondary Structure Prediction Using Cascaded Convolutional and Recurrent Neural Networks. arXiv preprint arXiv:1604.07176 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. B. Monastyrskyy, A. Kryshtafovych, J. Moult, A. Tramontano, and K. Fidelis. 2014. Assessment of protein disorder region predictions in CASP10. Proteins: Structure, Function, and Bioinformatics 82, S2 (2014), 127--137.Google ScholarGoogle ScholarCross RefCross Ref
  21. J. Moult, K. Fidelis, A. Kryshtafovych, T. Schwede, and A. Tramontano. 2014. Critical assessment of methods of protein structure prediction (CASP)round x. Proteins: Structure, Function, and Bioinformatics 82, S2 (2014), 1--6.Google ScholarGoogle ScholarCross RefCross Ref
  22. D. Ruck, S. Rogers, M. Kabrisky, M. Oxley, and B. Suter. 1990. The multilayer perceptron as an approximation to a Bayes optimal discriminant function. Neural Networks, IEEE Transactions on 1, 4 (1990), 296--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Schuster and K. Paliwal. 1997. Bidirectional Recurrent Neural Networks. Trans. Sig. Proc. 45, 11 (Nov. 1997), 2673--2681. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Singh. 2005. Predicting protein secondary and supersecondary structure. Handbook of Computational Molecular Biology, hapman & Hall CRC Computer and Information Science Series (2005).Google ScholarGoogle Scholar
  25. S. Sønderby, C. Sønderby, H. Nielsen, and O. Winther. 2015. Convolutional LSTM networks for subcellular localization of proteins. In International Conference on Algorithms for Computational Biology. Springer, 68--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. Sønderby and O. Winther. 2014. Protein secondary structure prediction with long short term memory networks. arXiv preprint arXiv:1412.7828 (2014).Google ScholarGoogle Scholar
  27. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. (2014). http://dl.acm.org/citation.cfm?id=2627435.2670313 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. WaveNet: A Generative Model for Raw Audio. CoRR abs/1609.03499 (2016). http://arxiv.org/abs/1609.03499Google ScholarGoogle Scholar
  29. S. Wang, J. Peng, J. Ma, and J. Xu. 2016. Protein secondary structure prediction using deep convolutional neural fields. Scientific reports 6 (2016).Google ScholarGoogle Scholar
  30. . Wu, M. Schuster, Z. Chen, Q. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, and others. 2016. Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv preprint arXiv:1609.08144 (2016). https://arxiv.org/abs/1609.08144Google ScholarGoogle Scholar
  31. J. Zhou and O. Troyanskaya. 2014. Deep Supervised and Convolutional Generative Stochastic Network for Protein Secondary Structure Prediction. In ICML. 745--753. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Deep Recurrent Conditional Random Field Network for Protein Secondary Prediction

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          ACM-BCB '17: Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics
          August 2017
          800 pages
          ISBN:9781450347228
          DOI:10.1145/3107411

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 20 August 2017

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • short-paper

          Acceptance Rates

          ACM-BCB '17 Paper Acceptance Rate42of132submissions,32%Overall Acceptance Rate254of885submissions,29%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader