skip to main content
10.1145/3122986.3123017acmconferencesArticle/Chapter ViewAbstractPublication PagesautomotiveuiConference Proceedingsconference-collections
research-article
Best Paper

Using EEG to Understand why Behavior to Auditory In-vehicle Notifications Differs Across Test Environments

Authors Info & Claims
Published:24 September 2017Publication History

ABSTRACT

In this study, we employ EEG methods to clarify why auditory notifications, which were designed for task management in highly automated trucks, resulted in different performance behavior, when deployed in two different test settings: (a) student volunteers in a lab environment, (b) professional truck drivers in a realistic vehicle simulator. Behavioral data showed that professional drivers were slower and less sensitive in identifying notifications compared to their counterparts. Such differences can be difficult to interpret and frustrates the deployment of implementations from the laboratory to more realistic settings. Our EEG recordings of brain activity reveal that these differences were not due to differences in the detection and recognition of the notifications. Instead, it was due to differences in EEG activity associated with response generation. Thus, we show how measuring brain activity can deliver insights into how notifications are processed, at a finer granularity than can be afforded by behavior alone.

References

  1. L. Bainbridge. 1983. Ironies of automation. Automatica 19, 6 (1983), 775--779. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Y. Benjamini and Y. Hochberg. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological) (1995), 289--300. http://www.jstor.org/stable/2346101Google ScholarGoogle Scholar
  3. N. Bigdely-Shamlo, T. Mullen, C. Kothe, K-M. Su, and K. A. Robbins. 2015. The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Frontiers in neuroinformatics 9 (2015), 16.Google ScholarGoogle Scholar
  4. M. G Bleichner, B. Mirkovic, and S. Debener. 2016. Identifying auditory attention with ear-EEG: cEEGrid versus high-density cap-EEG comparison. Journal of Neural Engineering 13, 6 (2016), 066004. http://stacks.iop.org/1741-2552/13/i=6/a=066004Google ScholarGoogle ScholarCross RefCross Ref
  5. S. Borojeni, L. Chuang, W. Heuten, and S. Boll. 2016. Assisting Drivers with Ambient Take-Over Requests in Highly Automated Driving. In Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (Automotive'UI 16). ACM, New York, NY, USA, 237--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Y. Cao, F. van der Sluis, M. Theune, R. op den Akker, and A. Nijholt. 2010. Evaluating Informative Auditory and Tactile Cues for In-vehicle Information Systems. In Proceedings of the 2Nd International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI '10). ACM, New York, NY, USA, 102--109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S.M. Casner, E.L. Hutchins, and D. Norman. 2016. The Challenges of Partially Automated Driving. Commun. ACM 59, 5 (April 2016), 70--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Delacre, D. Lakens, and C. Leys. in press. Why Psychologists Should by Default Use Welch's t-test Instead of Student's t-test. International Review of Social Psychology (in press).Google ScholarGoogle Scholar
  9. A. Delorme and S. Makeig. 2004. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods 134, 1 (2004), 9--21.Google ScholarGoogle ScholarCross RefCross Ref
  10. A. Delorme, J. Palmer, J. Onton, R. Oostenveld, and S. Makeig. 2012. Independent EEG sources are dipolar. PloS one 7, 2 (2012), e30135.Google ScholarGoogle ScholarCross RefCross Ref
  11. E. Donchin and M.G.H. Coles. 1988. Is the P300 component a manifestation of context updating. Behavioral and brain sciences 11, 3 (1988), 357--427.Google ScholarGoogle Scholar
  12. J. Edworthy, S. Loxley, and I. Dennis. 1991. Improving auditory warning design: relationship between warning sound parameters and perceived urgency. Human factors 33, 2 (1991), 205--231.Google ScholarGoogle Scholar
  13. Johan Fagerlönn, Stefan Lindberg, and Anna Sirkka. 2015. Combined Auditory Warnings For Driving-Related Information. In Proceedings of the Audio Mostly 2015 on Interaction With Sound (AM '15). ACM, New York, NY, USA, Article 11, 5 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. K. Gramann, D.P. Ferris, J. Gwin, and S. Makeig. 2014. Imaging natural cognition in action. International Journal of Psychophysiology 91, 1 (2014), 22--29.Google ScholarGoogle ScholarCross RefCross Ref
  15. R. Gray. 2011. Looming Auditory Collision Warnings for Driving. Human Factors 53, 1 (2011), 63--74.Google ScholarGoogle ScholarCross RefCross Ref
  16. P. Green, W. Levison, G. Paelke, and C. Serafin. 1995. Preliminary Human Factors Design Guidelines for Driver Information Systems. Technical Report FHWA-RD-94-087. US Department of Transportation, Federal Highway Administration. 1--111 pages.Google ScholarGoogle Scholar
  17. D. M. Groppe, T. P. Urbach, and M. Kutas. 2011. Mass univariate analysis of event-related brain potentials/fields I: A critical tutorial review. Psychophysiology 48, 12 (2011), 1711--1725.Google ScholarGoogle ScholarCross RefCross Ref
  18. S. Haufe, J-W. Kim, I-H. Kim, A. Sonnleitner, M. Schrauf, G. Curio, and B. Blankertz. 2014. Electrophysiology-based detection of emergency braking intention in real-world driving. Journal of neural engineering 11, 5 (2014), 056011.Google ScholarGoogle ScholarCross RefCross Ref
  19. T-P. Jung, S. Makeig, C. Humphries, T-W. Lee, M. J. Mckeown, V. Iragui, and T. J. Sejnowski. 2000. Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37, 2 (2000), 163--178.Google ScholarGoogle ScholarCross RefCross Ref
  20. H.H. Kornhuber and L. Deecke. 1964. Hirnpotentialanderungen beim Menschen vor und nach Willkurbewegungen dargestellt mit Magnetbandspeicherung und Ruckwartsanalyse. In Pflugers Archiv, Vol. 281. 52.Google ScholarGoogle Scholar
  21. S. Krupenia, A. Selmarker, J. Fagerlönn, K. Delsing, A. Jansson, B. Sandblad, and C. Grane. 2014. The Methods for Designing Future Autonomous Systems' (MODAS) project: Developing the cab for a highly autonomous truck. In Proceedings of the 5th International Conference on Applied Human Factors and Ergonomics (AHFE2014) (Krakow, Poland). 19--23.Google ScholarGoogle Scholar
  22. A. L. Kun, S. Boll, and A. Schmidt. 2016. Shifting Gears: User Interfaces in the Age of Autonomous Driving. IEEE Pervasive Computing 15, 1 (Jan 2016), 32--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. B. Libet. 1985. Unconscious cerebral initiative and the role of conscious will in voluntary action. Behavioral and Brain Sciences 8, 4 (1985), 529--539.Google ScholarGoogle ScholarCross RefCross Ref
  24. D.E.J. Linden, D. Prvulovic, E. Formisano, M. Völlinger, F. E. Zanella, R. Goebel, and T. Dierks. 1999. The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. Cerebral Cortex 9, 8 (1999), 815--823.Google ScholarGoogle ScholarCross RefCross Ref
  25. A. Löcken, W. Heuten, and S. Boll. 2015. Supporting Lane Change Decisions with Ambient Light. In Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI '15). ACM, New York, NY, USA, 204--211. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Löcken, S. Sadeghian Borojeni, H. Müller, T.M. Gable, S. Triberti, C. Diels, C. Glatz, I. Alvarez, L. Chuang, and S. Boll. 2017. Towards Adaptive Ambient In-Vehicle Displays and Interactions: Insights and Design Guidelines from the 2015 AutomotiveUI Dedicated Workshop. In Automotive User Interfaces: Creating Interactive Experiences in the Car, G. Meixner and C. Müller (Eds.). Springer International Publishing, Cham, 325--348.Google ScholarGoogle Scholar
  27. S.A. Lu, C.D. Wickens, J.C. Prinet, S.D. Hutchins, N. Sarter, and A. Sebok. 2013. Supporting interruption management and multimodal interface design: three meta-analyses of task performance as a function of interrupting task modality. Human Factors 55, 4 (2013), 697--724.Google ScholarGoogle ScholarCross RefCross Ref
  28. N. A. Macmillan and C. D. Creelman. 1991. Detection theory: A user's guide (1st ed.). Lawrence Erlbaum Associates Inc., New Jersey.Google ScholarGoogle Scholar
  29. D.C. Marshall, J.D. Lee, and R.A. Austria. 2007. Alerts for in-vehicle information systems: annoyance, urgency, and appropriateness. Human factors 49, 1 (2007), 145--57.Google ScholarGoogle Scholar
  30. D. Scott McCrickard and C. M. Chewar. 2003. Attuning Notification Design to User Goals and Attention Costs. Commun. ACM 46, 3 (March 2003), 67--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. D. McKeown and S. Isherwood. 2007. Mapping Candidate Within-Vehicle Auditory Displays to Their Referents. Human Factors 49, 3 (2007), 417--428.Google ScholarGoogle ScholarCross RefCross Ref
  32. M. A. Mollenhauer, J. Lee, K. Cho, M. C. Hulse, and T. A. Dingus. 1994. The Effects of Sensory Modality and Information Priority on In-Vehicle Signing and Information Systems. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 38. 1072--1076.Google ScholarGoogle Scholar
  33. M.A. Nees and B.N. Walker. 2011. Auditory displays for in-vehicle technologies. Reviews of human factors and ergonomics 7, 1 (2011), 58--99.Google ScholarGoogle Scholar
  34. C.L. Paul, A. Komlodi, and W. Lutters. 2015. Interruptive notifications in support of task management. International Journal of Human-Computer Studies 79 (2015), 20--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. T. W. Picton. 2010. Human auditory evoked potentials. Plural Publishing.Google ScholarGoogle Scholar
  36. Ioannis Politis, Stephen Brewster, and Frank Pollick. 2015. Language-based Multimodal Displays for the Handover of Control in Autonomous Cars. In Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (Automotive UI '15). ACM, New York, NY, USA, 3--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Z. Pousman and J. Stasko. 2006. A Taxonomy of Ambient Information Systems: Four Patterns of Design. In Proceedings of the Working Conference on Advanced Visual Interfaces (AVI '06). ACM, New York, NY, USA, 67--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. P. Praamstra, D.F. Stegeman, M.W.I.M. Horstink, and A.R. Cools. 1996. Dipole source analysis suggests selective modulation of the supplementary motor area contribution to the readiness potential. Electroencephalography and clinical neurophysiology 98, 6 (1996), 468--477.Google ScholarGoogle Scholar
  39. T. Ross, K. Midtland, M. Fuchs, A. Pauzié, A. Engert, B. Duncan, G. Vaughan, M. Vernet, H. Peters, G. Burnett, and A. May. 1996. HARDIE Design Guidelines Handbook: Human Factors Guidelines for Information Presentation by ATT Systems. Technical Report V2008 HARDIE, Deliverable No. 20. European Commission Host Organization, CORDIS, Luxembourg. 1--562 pages.Google ScholarGoogle Scholar
  40. M. Scheer, H. H. Bülthoff, and L. L Chuang. 2016. Steering Demands Diminish the Early-P3, Late-P3 and RON Components of the Event-Related Potential of Task-Irrelevant Environmental Sounds. Frontiers in human neuroscience 10, March (2016), 73.Google ScholarGoogle Scholar
  41. D. L. Schomer and F. L. Da Silva. 2012. Niedermeyer's electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins.Google ScholarGoogle Scholar
  42. M. Schultze-Kraft, D. Birman, M. Rusconi, C. Allefeld, K. Görgen, S. Dähne, B. Blankertz, and J-D. Haynes. 2016. The point of no return in vetoing self-initiated movements. Proceedings of the National Academy of Sciences 113, 4 (2016), 1080--1085.Google ScholarGoogle ScholarCross RefCross Ref
  43. H. Shibasaki and M. Hallett. 2006. What is the Bereitschaftspotential? Clinical Neurophysiology 117, 11 (2006), 2341--2356.Google ScholarGoogle ScholarCross RefCross Ref
  44. A. Stevens, A. Quimby, A. Board, T. Kersloot, and P. Burns. 2002. Design guidelines for safety of in-vehicle information systems. Technical Report TRL-PA-3721/01. Department of Transport, Local Government and the Regions. 1--55 pages. http://www.transport-research.info/Upload/Documents/200607/20060728Google ScholarGoogle Scholar
  45. O. Tsimhoni and M. Flannagan. 2006. Pedestrian detection with night vision systems enhanced by automatic warnings. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 50. Sage Publications, 2443--2447.Google ScholarGoogle Scholar
  46. C. D. Wickens. 2002. Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science 3, 2 (2002), 159--177.Google ScholarGoogle ScholarCross RefCross Ref
  47. C. D. Wickens. 2008. Applied attention theory. Ergonomics 1, 2 (2008), 222.Google ScholarGoogle Scholar
  48. T.O. Zander, L.M. Andreessen, A. Berg, M. Bleuel, J. Pawlitzki, L. Zawallich, L.R. Krol, and K. Gramann. 2017. Evaluation of a Dry EEG System for Application of Passive Brain-Computer Interfaces in Autonomous Driving. Frontiers in Human Neuroscience 11 (2017).Google ScholarGoogle Scholar
  49. S. Zhang, R. Benenson, M. Omran, J. Hosang, and B. Schiele. 2016. How Far are We from Solving Pedestrian Detection?. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1259--1267.Google ScholarGoogle Scholar

Index Terms

  1. Using EEG to Understand why Behavior to Auditory In-vehicle Notifications Differs Across Test Environments

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      AutomotiveUI '17: Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications
      September 2017
      317 pages
      ISBN:9781450351508
      DOI:10.1145/3122986

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 24 September 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      AutomotiveUI '17 Paper Acceptance Rate29of85submissions,34%Overall Acceptance Rate248of566submissions,44%

      Upcoming Conference

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader