skip to main content
research-article
Free Access

ComplementMe: weakly-supervised component suggestions for 3D modeling

Published:20 November 2017Publication History
Skip Abstract Section

Abstract

Assembly-based tools provide a powerful modeling paradigm for non-expert shape designers. However, choosing a component from a large shape repository and aligning it to a partial assembly can become a daunting task. In this paper we describe novel neural network architectures for suggesting complementary components and their placement for an incomplete 3D part assembly. Unlike most existing techniques, our networks are trained on unlabeled data obtained from public online repositories, and do not rely on consistent part segmentations or labels. Absence of labels poses a challenge in indexing the database of parts for the retrieval. We address it by jointly training embedding and retrieval networks, where the first indexes parts by mapping them to a low-dimensional feature space, and the second maps partial assemblies to appropriate complements. The combinatorial nature of part arrangements poses another challenge, since the retrieval network is not a function: several complements can be appropriate for the same input. Thus, instead of predicting a single output, we train our network to predict a probability distribution over the space of part embeddings. This allows our method to deal with ambiguities and naturally enables a UI that seamlessly integrates user preferences into the design process. We demonstrate that our method can be used to design complex shapes with minimal or no user input. To evaluate our approach we develop a novel benchmark for component suggestion systems demonstrating significant improvement over state-of-the-art techniques.

Skip Supplemental Material Section

Supplemental Material

a226-sung.mp4

mp4

11.7 MB

References

  1. Christopher M. Bishop. 1994. Mixture density networks. Technical Report. Neural Computing Research Group, Aston University.Google ScholarGoogle Scholar
  2. Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo Li, Silvio Savarese, Manolis Sawa, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. CoRR abs/1512.03012 (2015).Google ScholarGoogle Scholar
  3. Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas Guibas, and Vladlen Koltun. 2011. Probabilistic Reasoning for Assembly-based 3D Modeling. In SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Siddhartha Chaudhuri and Vladlen Koltun. 2010. Data-driven Suggestions for Creativity Support in 3D Modeling. In SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Gal Chechik, Varun Sharma, Uri Shalit, and Samy Bengio. 2010. Large Scale Online Learning of Image Similarity Through Ranking. JMLR (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 2016. 3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction.Google ScholarGoogle Scholar
  7. Haoqiang Fan, Hao Su, and Leonidas Guibas. 2017. A Point Set Generation Network for 3D Object Reconstruction from a Single Image. CVPR (2017).Google ScholarGoogle Scholar
  8. Matthew Fisher, Daniel Ritchie, Manolis Sawa, Thomas Funkhouser, and Pat Hanrahan. 2012. Example-based Synthesis of 3D Object Arrangements. SIGGRAPH Asia (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. 2004. Modeling by Example. In SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. Garcia-Garcia, F. Gomez-Donoso, J. Garcia-Rodriguez, S. Orts-Escolano, M. Cazorla, and J. Azorin-Lopez. 2016. PointNet: A 3D Convolutional Neural Network for real-time object class recognition. In IJCNN.Google ScholarGoogle Scholar
  11. Rohit Girdhar, David F. Fouhey, Mikel Rodriguez, and Abhinav Gupta. 2016. Learning a Predictable and Generative Vector Representation for Objects.Google ScholarGoogle Scholar
  12. Aleksey Golovinskiy and Thomas Funkhouser. 2008. Randomized Cuts for 3D Mesh Analysis. ACM Transactions on Graphics (Proc. SIGGRAPH ASIA) 27, 5 (Dec. 2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Aleksey Golovinskiy and Thomas Funkhouser. 2009. Consistent Segmentation of 3D Models. Proc. SMI (2009).Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Edward Grant, Pushmeet Kohli, and Marcel van Gerven. 2016. Deep Disentangled Representations for Volumetric Reconstruction.Google ScholarGoogle Scholar
  15. R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimensionality Reduction by Learning an Invariant Mapping. In CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. Hu, L. Fan, and L. Liu. 2012. Co-segmentation of 3D shapes via subspace clustering. SGP (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ruizhen Hu, Chenyang Zhu, Oliver van Kaick, Ligang Liu, Ariel Shamir, and Hao Zhang. 2015. Interaction Context (ICON): Towards a Geometric Functionality Descriptor. SIGGRAPH (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Qixing Huang, Vladlen Koltun, and Leonidas Guibas. 2011. Joint shape segmentation with linear programming. In SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Qixing Huang, Fan Wang, and Leonidas Guibas. 2014. Functional Map Networks for Analyzing and Exploring Large Shape Collections. ACM TOG 33 (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Prakhar Jaiswal, Jinmiao Huang, and Rahul Rai. 2016. Assembly-based conceptual 3D modeling with unlabeled components using probabilistic factor graph. Computer-Aided Design (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and Vladlen Koltun. 2012. A Probabilistic Model for Component-based Shape Synthesis. SIGGRAPH (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. 2010. Learning 3D mesh segmentation and labeling. In SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Vladimir G. Kim, Siddhartha Chaudhuri, Leonidas Guibas, and Thomas Funkhouser. 2014. Shape2Pose: Human-centric Shape Analysis. SIGGRAPH (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Siddhartha Chaudhuri, Stephen DiVerdi, and Thomas Funkhouser. 2013. Learning Part-based Templates from Large Collections of 3D Shapes. SIGGRAPH (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. CoRR (2014).Google ScholarGoogle Scholar
  26. Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, and Max Welling. 2014. Semi-supervised Learning with Deep Generative Models. In NIPS. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Chen Kong, Chen-Hsuan Lin, and Simon Lucey. 2017. Using Locally Corresponding CAD Models for Dense 3D Reconstructions from a Single Image. CVPR (2017).Google ScholarGoogle Scholar
  28. Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas Guibas. 2017. GRASS: Generative Recursive Autoencoders for Shape Structures. SIGGRAPH (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Yangyan Li, Angela Dai, Leonidas Guibas, and Matthias Nießner. 2015. Database-Assisted Object Retrieval for Real-Time 3D Reconstruction. (2015).Google ScholarGoogle Scholar
  30. A. Makadia and M. E. Yumer. 2014. Learning 3D Part Detection from Sparsely Labeled Data. In 3DV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial Nets. CoRR abs/1411.1784 (2014).Google ScholarGoogle Scholar
  32. Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin. 2002. Shape Distributions. ACM TOG (2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2017. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. CVPR (2017).Google ScholarGoogle Scholar
  34. C. R. Qi, H. Su, M. Nieçner, A. Dai, M. Yan, and L. J. Guibas. 2016. Volumetric and Multi-view CNNs for Object Classification on 3D Data. In CVPR.Google ScholarGoogle Scholar
  35. Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. 2017. OctNet: Learning Deep 3D Representations at High Resolutions. CVPR (2017).Google ScholarGoogle Scholar
  36. Tianjia Shao, Aron Monszpart, Youyi Zheng, Bongjin Koo, Weiwei Xu, Kun Zhou, and Niloy J. Mitra. 2014. Imagining the Unseen: Stability-based Cuboid Arrangements for Scene Understanding. SIGGRAPH Asia (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Abhishek Sharma, Oliver Grau, and Mario Fritz. 2016. VConv-DAE: Deep Volumetric Shape Learning Without Object Labels.Google ScholarGoogle Scholar
  38. Chao-Hui Shen, Hongbo Fu, Kang Chen, and Shi-Min Hu. 2012. Structure Recovery by Part Assembly. SIGGRAPH Asia (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Oana Sidi, Oliver van Kaick, Yanir Kleiman, Hao Zhang, and Daniel Cohen-Or. 2011. Unsupervised Co-Segmentation of a Set of Shapes via Descriptor-Space Spectral Clustering. SIGGRAPH Asia (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Kihyuk Sohn, Xinchen Yan, and Honglak Lee. 2015. Learning Structured Output Representation Using Deep Conditional Generative Models. In NIPS. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Hao Su, Yangyan Li, Charles Ruizhongtai Qi, Noa Fish, Daniel Cohen-Or, and Leonidas J Guibas. 2015a. Joint embeddings of shapes and images via cnn image purification. ACM Transactions on Graphics (TOG) 34, 6 (2015), 234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015b. Multi-view Convolutional Neural Networks for 3D Shape Recognition. In ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Minhyuk Sung, Vladimir G. Kim, Roland Angst, and Leonidas Guibas. 2015. Data-driven Structural Priors for Shape Completion. SIGGRAPH Asia (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Trimble. 2017. 3D Warehouse. (2017). https://3dwarehouse.sketchup.com/Google ScholarGoogle Scholar
  45. Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Jitendra Malik. 2017. Multi-view Supervision for Single-view Reconstruction via Differentiable Ray Consistency. In CVPR.Google ScholarGoogle Scholar
  46. Laurens van der Maaten. 2009. Learning a Parametric Embedding by Preserving Local Structure. In AISTATS.Google ScholarGoogle Scholar
  47. Oliver van Kaick, Kai Xu, Hao Zhang, Yanzhen Wang, Shuyang Sun, Ariel Shamir, and Daniel Cohen-Or. 2013. Co-hierarchical analysis of shape structures. ACM TOG (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Yunhai Wang, Shmulik Asafi, Oliver van Kaick, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. 2012. Active Co-analysis of a Set of Shapes. SIGGRAPH Asia (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Jiajun Wu, Tianfan Xue, Joseph J. Lim, Yuandong Tian, Joshua B. Tenenbaum, Antonio Torralba, and William T. Freeman. 2016a. Single Image 3D Interpreter Network.Google ScholarGoogle Scholar
  50. Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Freeman, and Joshua B Tenenbaum. 2016b. Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In NIPS. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Zhirong Wu, Shuran Song, Aditya Khosla, Xiaoou Tang, and Jianxiong Xiao. 2015a. 3D ShapeNets for 2.5D Object Recognition and Next-Best-View Prediction. CVPR (2015).Google ScholarGoogle Scholar
  52. Zhirong Wu, S. Song, A. Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and J. Xiao. 2015b. 3D ShapeNets: A deep representation for volumetric shapes. In CVPR.Google ScholarGoogle Scholar
  53. Zhige Xie, Kai Xu, Ligang Liu, and Yueshan Xiong. 2014. 3D Shape Segmentation and Labeling via Extreme Learning Machine. SGP (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Kai Xu, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. 2012. Fit and Diverse: Set Evolution for Inspiring 3D Shape Galleries. SIGGRAPH (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Li Yi, Leonidas Guibas, Aaron Hertzmann, Vladimir G. Kim, Hao Su, and Ersin Yumer. 2017. Learning Hierarchical Shape Segmentation and Labeling from Online Repositories. SIGGRAPH (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas. 2016. A Scalable Active Framework for Region Annotation in 3D Shape Collections. SIGGRAPH Asia (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Youyi Zheng, Daniel Cohen-Or, Melinos Averkiou, and Niloy J. Mitra. 2014. Recurring part arrangements in shape collections. (2014).Google ScholarGoogle Scholar
  58. Youyi Zheng, Daniel Cohen-Or, and Niloy J. Mitra. 2013. Smart Variations: Functional Substructures for Part Compatibility. Eurographics (2013).Google ScholarGoogle Scholar

Index Terms

  1. ComplementMe: weakly-supervised component suggestions for 3D modeling

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 36, Issue 6
        December 2017
        973 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3130800
        Issue’s Table of Contents

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 20 November 2017
        Published in tog Volume 36, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader