skip to main content
10.1145/3132211.3134445acmconferencesArticle/Chapter ViewAbstractPublication PagessecConference Proceedingsconference-collections
research-article
Public Access

Fast transparent virtual machine migration in distributed edge clouds

Published:12 October 2017Publication History

ABSTRACT

Edge clouds are emerging as a popular paradigm of computation. In edge clouds, computation and storage can be distributed across a large number of locations, allowing applications to be hosted at the edge of the network close to the end-users. Virtual machine live migration is a key mechanism which enables applications to be nimble and nomadic as they respond to changing user locations and workload.

However, VM live migration in edge clouds poses a number of challenges. Migrating VMs between geographically separate locations over slow wide-area network links results in large migration times and high unavailability of the application. This is due to network reconfiguration delays as user traffic is redirected to the newly migrated location. In this paper, we propose the use of multi-path TCP to both improve VM migration time and network transparency of applications.

We evaluate our approach in a commercial public cloud environment and an emulated lab based edge cloud testbed using a variety of network conditions and show that our approach can reduce migration times by up to 2X while virtually eliminating downtimes for most applications.

References

  1. Linux Ethernet Bridge Firewalling. http://ebtables.netfilter.org/, December 2016.Google ScholarGoogle Scholar
  2. A. Anand, V. Sekar, and A. Akella. Smartre: an architecture for coordinated network-wide redundancy elimination. In SIGCOMM. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Apple Corporation. iOS: Multipath TCP support in iOS 7. https://support.apple.com/en-us/HT201373.Google ScholarGoogle Scholar
  4. D. Banfi, O. Mehani, G. Jourjon, L. Schwaighofer, and R. Holz. Endpoint-transparent multipath transport with software-defined networks. In Local Computer Networks (LCN), 2016 IEEE 41st Conference on, pages 307--315. IEEE, 2016. Google ScholarGoogle ScholarCross RefCross Ref
  5. M. V. Barbera, S. Kosta, A. Mei, and J. Stefa. To offload or not to offload? the bandwidth and energy costs of mobile cloud computing. In INFOCOM. IEEE, 2013. Google ScholarGoogle ScholarCross RefCross Ref
  6. Y. Benchaïb, S. Secci, and C.-D. Phung. Transparent cloud access performance augmentation via an mptcp-lisp connection proxy. In Architectures for Networking and Communications Systems (ANCS), pages 201--202. IEEE, 2015. Google ScholarGoogle ScholarCross RefCross Ref
  7. F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in the Internet of things. In Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pages 13--16. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg. Live wide-area migration of virtual machines including local persistent state. In Virtual Execution Environments (VEE). ACM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. R. Bruno and P. Ferreira. Alma: Gc-assisted JVM live migration for Java server applications. In Middleware Conference, pages 19--20. ACM, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Carbone and L. Rizzo. Dummynet revisited. SIGCOMM, pages 12--20.Google ScholarGoogle Scholar
  11. A. Chandra, J. Weissman, and B. Heintz. Decentralized edge clouds. IEEE Internet Computing, 17(5):70--73, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Y.-C. Chen, Y.-S. Lim, R. J. Gibbens, E. Nahum, R. Khalili, and D. Towsley. A measurement-based study of multipath TCP performance in wireless networks. In Proc. of ACM IMC, pages 455--468, Nov 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield. Live migration of virtual machines. In Proc. of USENIX NSDI, 2005.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl. MAUI: Making smartphones last longer with code offload. In International conference on Mobile systems, applications, and services. ACM, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar. Architectural guidelines for multipath TCP development. RFC 6182, Mar. 2011.Google ScholarGoogle Scholar
  16. A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP extensions for multipath operation with multiple addresses. RFC 6824, 2013.Google ScholarGoogle Scholar
  17. T. Guo, V. Gopalakrishnan, K. Ramakrishnan, P. Shenoy, A. Venkataramani, and S. Lee. Vmshadow: optimizing the performance of latency-sensitive virtual desktops in distributed clouds. In MMSYS. ACM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese, G. M. Voelker, and A. Vahdat. Difference engine: Harnessing memory redundancy in virtual machines. Communications of the ACM, 53(10):85--93, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. K. Ha, Y. Abe, Z. Chen, W. Hu, B. Amos, P. Pillai, and M. Satyanarayanan. Adaptive vm handoff across cloudlets. 2015.Google ScholarGoogle Scholar
  20. K.-Y. Hou, K. G. Shin, and J.-L. Sung. Application-assisted live migration of virtual machines with Java applications. In EuroSys. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. Thinkair: Dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In INFOCOM. IEEE, 2012. Google ScholarGoogle ScholarCross RefCross Ref
  22. Y.-s. Lim, Y.-C. Chen, E. M. Nahum, D. Towsley, R. J. Gibbens, and E. Cecchet. Design, implementation, and evaluation of energy-aware multi-path TCP. CoNEXT15, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. J. Mashtizadeh, M. Cai, G. Tarasuk-Levin, R. Koller, T. Garfinkel, and S. Setty. XvMotion: Unified virtual machine migration over long distance. In Proc. of USENIX Annual Technical Conference, 2014.Google ScholarGoogle Scholar
  24. R. Nasim and A. J. Kassler. Network-centric performance improvement for live vm migration. In Cloud Computing (CLOUD), 2015 IEEE 8th International Conference on, pages 106--113. IEEE, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Nathan, U. Bellur, and P. Kulkarni. Towards a comprehensive performance model of virtual machine live migration. In SoCC. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. Nathan, U. Bellur, and P. Kulkarni. On selecting the right optimizations for virtual machine migration. In VEE, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent migration for virtual machines. In Proc. of USENIX Annual Technical Conference, 2005.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. C. Nicutar, C. Paasch, M. Bagnulo, and C. Raiciu. Evolving the Internet with connection acrobatics. In Proceedings of the SIGCOMM Workshop on Hot Topics in Middleboxes and Network Function Virtualization. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai network: A platform for high-performance Internet applications. ACM SIGOPS Operating Systems Review, 44(3):2--19, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. C. Paasch and S. Barre. Multipath tcp in the linux kernel, available from http://www.multipath-tcp.org.Google ScholarGoogle Scholar
  31. C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure. Exploring mobile/WiFi handover with multipath TCP. In Proc. of ACM Cellnet, pages 31--36, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley. Improving datacenter performance and robustness with multipath TCP. In Proc. of ACM SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure, and M. Handley. How hard can it be? Designing and implementing a deployable multipath TCP. In Proc. of USENIX NSDI, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and M. Rosenblum. Optimizing the migration of virtual computers. In Proc. of USENIX OSDI, 2002. Google ScholarGoogle ScholarCross RefCross Ref
  35. M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based cloudlets in mobile computing. IEEE pervasive Computing, 8(4):14--23, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Z. Shen, Q. Jia, G.-E. Sela, B. Rainero, W. Song, R. van Renesse, and H. Weatherspoon. Follow the sun through the clouds: Application migration for geographically shifting workloads. In SoCC. ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. F. Teka, C.-H. Lung, and S. A. Ajila. Nearby live virtual machine migration using cloudlets and multipath tcp. Journal of Cloud Computing, 5(1):12, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. F. Travostino, P. Daspit, L. Gommans, C. Jog, C. De Laat, J. Mambretti, I. Monga, B. Van Oudenaarde, S. Raghunath, and P. Y. Wang. Seamless live migration of virtual machines over the MAN/WAN. Future Generation Computer Systems, 22(8):901--907, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt. Cloudlets: Bringing the cloud to the mobile user. In Workshop on Mobile cloud computing and services. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. T. Wood, K. Ramakrishnan, P. Shenoy, and J. Van der Merwe. CloudNet: Dynamic pooling of cloud resources by live WAN migration of virtual machines. In VEE. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. W. Zhao, Z. Wang, and Y. Luo. Dynamic memory balancing for virtual machines. ACM SIGOPS Operating Systems Review, 43(3):37--47, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. J. Zheng, T. S. E. Ng, and K. Sripanidkulchai. Workload-aware live storage migration for clouds. In VEE. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fast transparent virtual machine migration in distributed edge clouds

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              SEC '17: Proceedings of the Second ACM/IEEE Symposium on Edge Computing
              October 2017
              365 pages
              ISBN:9781450350877
              DOI:10.1145/3132211

              Copyright © 2017 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 12 October 2017

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

              Acceptance Rates

              SEC '17 Paper Acceptance Rate20of41submissions,49%Overall Acceptance Rate40of100submissions,40%

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader