skip to main content
10.1145/3173574.3173742acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

What Makes an Automated Vehicle a Good Driver?

Published:19 April 2018Publication History

ABSTRACT

An automated vehicle needs to learn how human road users experience the intentions of other drivers and understand how they communicate with each other in order to avoid misunderstandings and prevent giving a negative external image during interactions. The aim of the present study is to identify a cooperative lane change indication which other drivers understand unambiguously and prefer when it comes to lane change announcements in a dense traffic situation on the highway. A fixed-base driving simulator study is conducted with N = 66 participants in Germany in a car-following scenario. Participants rated, from the lag driver's perspective, different lane change announcements of another driver which varied in lateral movements (i.e., duration, lateral offset). Main findings indicate that a medium offset and moderate duration of lateral movement is experienced as most cooperative. The results are crucial for the development of lane change strategies for automated vehicles.

Skip Supplemental Material Section

Supplemental Material

pn2124.mp4

mp4

207 MB

References

  1. J. Steinle A. Neukum, T. Lübbeke, H.-P. Krüger, C. Mayser. 2008. ACC Stop&Go: Fahrerverhalten an funktionalen Systemgrenzen. ACC Stop&Go: Fahrerverhalten an funktionalen Systemgrenzen, Workshop Fahrassistenzsysteme, 141--150.Google ScholarGoogle Scholar
  2. Kazi Iftekhar Ahmed. 1999. Modeling Drivers Acceleration and Lane Changing Behavior. Retrieved from http://hdl.handle.net/1721.1/9662.Google ScholarGoogle Scholar
  3. Lawrence Barr and Wassim Najm. 2001. Crash Problem Characteristics for the Intelligent Vehicle Initiative. Transportation Research Board 80th Annual Meeting, 30.Google ScholarGoogle Scholar
  4. Matthias Beggiato and Josef F. Krems. 2013. The evolution of mental model, trust and acceptance of adaptive cruise control in relation to initial information. Transportation Research Part F: Traffic Psychology and Behaviour 18: 47--57.Google ScholarGoogle ScholarCross RefCross Ref
  5. Ahmed Benmimoun, Dirk Neunzig, and Christian Maag. 2004. Effizienzsteigerung durch professionelles/partnerschaftliches Verhalten im Straßenverkehr. FAT-Schriftenreihe 181, Forschungsvereinigung Automobiltechnik e.V.Google ScholarGoogle Scholar
  6. Sharon S. Brehm and Jack W. Brehm. 2013. Psychological Reactance: a Theory of Freedom and Control. Elsevier Science.Google ScholarGoogle Scholar
  7. Karel A. Brookhuis and Dick Waard de. 2006. Consequences of Automation for Driver Behaviour and Acceptance. Iea 2006 November: 8.Google ScholarGoogle Scholar
  8. Charisma Farheen Choudhury. 2005. Modeling Lane-changing Behavior in Presence of Exclusive Lanes. University of California, Berkeley 2002: 122.Google ScholarGoogle Scholar
  9. Charisma Farheen Choudhury. 2007. Modeling Driving Decisions with Latent Plans. Environmental Engineering 2002: 238.Google ScholarGoogle Scholar
  10. John Chovan, Louis Tijerina, Graham Alexander, and Donald Hendricks. 1994. Examination of Lane Change Crashes and Potential IVHS Countermeasures. Cambridge.Google ScholarGoogle Scholar
  11. Frederic Christens and Qihui Huang. 2008. Das Fahrermodell im Verkehrsflusssumilationsprogramm PELOPS Modellierung und Applikationsmöglichkeiten. Fahrermodellierung in Wissenschaft und Wirtschaft: 2. Berliner Fachtagung Fahrermodellierung, 19. - 20. Juni 2008: 128--144.Google ScholarGoogle Scholar
  12. John Dawes. 2008. Do data characteristics change according to the number of scale points used? An experiment using 5-point, 7-point and 10-point scales. International Journal of Market Research 50, 1: 61--104.Google ScholarGoogle ScholarCross RefCross Ref
  13. U. Dogan, H. Edelbrunner, and I. Iossifidis. 2008. Towards a Driver Model: Preliminary Study of Lane Change Behavior. 2008 11th International IEEE Conference on Intelligent Transportation Systems: 931--937.Google ScholarGoogle Scholar
  14. Dirk Ehmanns. 2001. Simulation model of human lane change behaviour. Der Fahrer im 21. Jahrhundert: Tagung Berlin, 3. und 4. Mai 2001, DI-Gesellschaft Fahrzeug- und Verkehrstechnik, 203--216.Google ScholarGoogle Scholar
  15. Dieter Ellinghaus. 1986. Rücksichtslosigkeit und Partnerschaft. Eine sozialpsychologische Untersuchung über den Umgang unter Kraftfahrern im Straßenverkehr. IFAPLAN, Köln.Google ScholarGoogle Scholar
  16. Berthold Färber. 2015. Kommunikationsprobleme zwischen autonomen Fahrzeugen und menschlichen Fahrern. In Autonomes Fahren. Springer Berlin Heidelberg, Berlin, Heidelberg, 127--146.Google ScholarGoogle Scholar
  17. Charles L. Folk, Roger W. Remington, and James C. Johnston. 1992. Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance 18, 4: 1030--1044.Google ScholarGoogle ScholarCross RefCross Ref
  18. Alexander Frey. 2016. Statischer und dynamischer Fahrsimulator im Vergleich -- Wahrnehmung von Abstand und Geschwindigkeit. Carl Schünemann Verlag .Google ScholarGoogle Scholar
  19. P.G. Gipps. 1985. A model for the structure of lanechanging decisions. Transportation Research Part B 20, 5: 403--414.Google ScholarGoogle ScholarCross RefCross Ref
  20. Riender Happee, Christian Gold, Jonas Radlmayr, Sebastian Hergeth, and Klaus Bengler. 2017. Takeover performance in evasive manoeuvres. Accident Analysis and Prevention 106, October 2016: 211-- 222.Google ScholarGoogle Scholar
  21. O. Heller. 1985. Hörfeldaudiometrie mit dem Verfahren der Kategorienunterteilung (KU). Psychologische Beiträge 27: 478--493.Google ScholarGoogle Scholar
  22. Matthias, Johannes Henning, O. Georgeon, and Josef.F. Krems. 2007. The quality of behavioral and environmental indicators used to infer the intention to change lanes. Proc. of the 4th International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design: 231--237.Google ScholarGoogle ScholarCross RefCross Ref
  23. Peter Hidas. 2002. Modelling lange changing and merging in microscopic traffic simulation. Transportation Research C 10, 5+6: 351--371.Google ScholarGoogle Scholar
  24. Peter Hidas. 2005. Modelling vehicle interactions in microscopic simulation of merging and weaving. Transportation Research Part C: Emerging Technologies 13, 1: 37--62.Google ScholarGoogle ScholarCross RefCross Ref
  25. Kevin Anthony Hoff and Masooda Bashir. 2015. Trust in Automation. Human Factors 57, 3: 407-- 434.Google ScholarGoogle ScholarCross RefCross Ref
  26. Daniel Howard. 2014. Public Perceptions of Selfdriving Cars: The Case of Berkeley, California. MS Transportation Engineering 2014, 1: 21.Google ScholarGoogle Scholar
  27. Edward E. Jones and Richard E. Nisbett. 1972. The actor and the observer: Divergent perceptions of the causes of behavior. Attribution: Perceiving the causes of behavior, 79--94.Google ScholarGoogle Scholar
  28. Nina Kauffmann and Mark Vollrath (submitted). Making a good impression- An attempt to objectify the outward image of the driver while lane changing in dense traffic. Transportation Research Part F: Traffic Psychology and Behaviour.Google ScholarGoogle Scholar
  29. Moritz Körber, Christian Gold, David Lechner, and Klaus Bengler. 2016. The influence of age on the take-over of vehicle control in highly automated driving. Transportation Research Part F: Traffic Psychology and Behaviour 39: 19--32.Google ScholarGoogle ScholarCross RefCross Ref
  30. Miltos Kyriakidis, Riender Happee, and Joost De Winter. 2015. Public opinion on automated driving: Results of an international questionnaire among 5000 respondents. Transportation Research Part F: Traffic Psychology and Behaviour 32, July: 127-- 140.Google ScholarGoogle ScholarCross RefCross Ref
  31. David R. Large, Gary Burnett, Andrew Morris, Arun Muthumani, and Rebecca Matthias. 2018. A Longitudinal Simulator Study to Explore Drivers' Behaviour During Highly-Automated Driving. In Proceedings of the AHFE 2017 International Conference on Human Factors in Transportation. Springer, 583--594.Google ScholarGoogle ScholarCross RefCross Ref
  32. Christian. Maag. 2004. Fahrer und Verkehrsklima: eine verkehrswissenschaftliche Untersuchung zu den Ursachen und Folgen von Emotionen im Strassenverkehr. Fortschritt-Berichte VDI. Reihe 22, Mensch-Maschine-Systeme, Nr. 18.Google ScholarGoogle Scholar
  33. D. Harrison Mcknight, Michelle Carter, Jason Bennett Thatcher, and Paul F. Clay. 2011. Trust in a specific technology: An investigation in its components and measures. ACM Transactions on Management Information Systems 2, 2: 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Klaus Merten. 1977. Kommunikationsprozesse im Straßenverkehr. In Symposium Unfallforschung und Verkehrssicherheit 1977=Schriftenreihe Unfallund Sicherheitsforschung Straßenverkehr. Bundesminister für Verkehr, 115--126.Google ScholarGoogle Scholar
  35. Michael. A. Nees. 2016. Acceptance of Self-driving Cars: An Examination of Idealized versus Realistic Portrayals with a Self- driving Car Acceptance Scale. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 60, 1: 1449-- 1453.Google ScholarGoogle ScholarCross RefCross Ref
  36. Eric C.B. Olsen. 2003. Modeling slow lead vehicle lane changing. Ph.D. Thesis. Retrieved from http://scholar.lib.vt.edu/theses/available/etd12032003--152916/.Google ScholarGoogle Scholar
  37. Harold Pashler, James C. Johnston, and Eric Ruthruff. 2001. Attention and Performance. Annual Review of Psychology 52, 1: 629--651.Google ScholarGoogle ScholarCross RefCross Ref
  38. Mizanur Rahman, Mashrur Chowdhury, Yuanchang Xie, and Yiming He. 2013. Review of microscopic lane-changing models and future research opportunities. IEEE Transactions on Intelligent Transportation Systems 14, 4: 1942--1956. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Tobias Rehder, N Maas, L Louis, and D Schramm. 2016. Merkmalselektion zur Prädiktion von Motivationsbasiertem Fahrverhalten. Nationale und internationale Trends in der Mobilität: 201--215.Google ScholarGoogle Scholar
  40. Tobias Rehder, Wolfgang Muenst, Lawrence Louis, and Dieter Schramm. 2016. Learning Lane Change Intentions through Lane Contentedness Estimation from Demonstrated Driving. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, IEEE, 893--898.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ralf Risser. 1987. Kommunikation und Kultur des Straßenverkehrs. Literas Ges.m.b.H., Universitäts-, Buch- und Zeitschriftenverlag.Google ScholarGoogle Scholar
  42. Christina Rödel, Susanne Stadler, Alexander Meschtscherjakov, and Manfred Tscheligi. 2014. Towards Autonomous Cars: The Effect of Autonomy Levels on Acceptance and User Experience. Proceedings of the 6th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Dirk Rothenbucher, Jamy Li, David Sirkin, Brian Mok, and Wendy Ju. 2016. Ghost driver: A field study investigating the interaction between pedestrians and driverless vehicles. 25th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2016, 795-- 802.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Brandon Schoettle and Michael Sivak. 2014. A survey of public opinion about autonomous and self-driving vehicles in the U.S., the U.K., and Australia. University of Michigan, Ann Arbor, Transportation Research InstituteGoogle ScholarGoogle Scholar
  45. Martin H. Strobl. 2003. SPIDER - The innovative software framework of the BMW driving simulation. Simulation und Simulatoren Mobilitaet virtuell gestalten. Tagung der VDIGesellschaft Fahrzeug- und Verkehrstechnik in Hamburg, 15. und 16. April 2003, VDI Verlag, 303--320.Google ScholarGoogle Scholar
  46. Sukhan Lee, Woong Kwon, and Jae-Won Lee. 1999. A vision based lane departure warning system. Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99 CH36289) 1: 160--165.Google ScholarGoogle Scholar
  47. Gail M. Sullivan and Richard Feinn. 2012. Using Effect Size-or Why the P Value Is Not Enough. Journal of graduate medical education 4, 3: 279-- 82.Google ScholarGoogle ScholarCross RefCross Ref
  48. Christopher D. Wickens, Juliana Goh, John Helleberg, William J. Horrey, and Donald A. Talleur. 2003. Attentional Models of Multitask Pilot Performance Using Advanced Display Technology. Human Factors: The Journal of the Human Factors and Ergonomics Society 45, 3: 360--380.Google ScholarGoogle ScholarCross RefCross Ref
  49. Claudia Witzlack, Matthias Beggiato, and Josef Krems. 2016. Interaktionssequenzen zwischen Fahrzeugen und Fußgängern im Parkplatzszenario als Grundlage für kooperativ interagierende Automatisierung. Fahrerassistenz und automatisiertes Fahren. VDI-Berichte 2288, VDI Verlag, 323--336.Google ScholarGoogle Scholar
  50. Jeremy M. Wolfe. 1994. Guided Dearch 2.0. a Revisited Model of Visual Search. Psychonomic Bulletin & Review 1, 2: 202--238.Google ScholarGoogle ScholarCross RefCross Ref
  51. R.D. Worrall and A.G.R Bullen. 1970. An Empirical Analysis of Lane Changing On Multilane Highways. Highway Research Record 303: 30--43.Google ScholarGoogle Scholar

Index Terms

  1. What Makes an Automated Vehicle a Good Driver?

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '18: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
      April 2018
      8489 pages
      ISBN:9781450356206
      DOI:10.1145/3173574

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 April 2018

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '18 Paper Acceptance Rate666of2,590submissions,26%Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader