skip to main content
10.1145/3175684.3175713acmotherconferencesArticle/Chapter ViewAbstractPublication PagesbdiotConference Proceedingsconference-collections
research-article

A Scientometric Analysis of Aerogel Research in 1996-2015: Visualizing the Knowledge Domain and Emerging Trends

Authors Info & Claims
Published:20 December 2017Publication History

ABSTRACT

Using the knowledge domain visualization software CiteSpace, the intellectual structure evolution in the aerogel research during 1996-2015 has been mapped and detected. Our network analysis and visualization are based on the document co-citation clusters of 7729 bibliographic records retrieved from Web of Science (WOS). The results reveal the fundamental research clusters and the key literatures. Since 2010, most research efforts of aerogel research have made to the clusters of #0Siliga, #1Graphene, #5Cellulose, #6Deionization, and #9Supercapacitors. Recent two years, the hottest research frontier is carbon nanotubes and/or graphene based aerogels with custom three dimensional for particular applications.

References

  1. Du, A.; Zhou, B.; Zhang, Z. H.; Shen, J., A Special Material or a New State of Matter: A Review and Reconsideration of the Aerogel. Materials 2013, 6 (3), 941--968.Google ScholarGoogle Scholar
  2. Wagh, P. B.; Begag, R.; Pajonk, G. M.; Rao, A. V.; Haranath, D., Comparison of some physical properties of silica aerogel monoliths synthesized by different precursors. Mater. Chem. Phys. 1999, 57 (3), 214--218.Google ScholarGoogle ScholarCross RefCross Ref
  3. Hrubesh, L. W., Aerogel applications. J. Non-Cryst. Solids 1998, 225 (1-3), 335--342.Google ScholarGoogle Scholar
  4. Pierre, A. C.; Pajonk, G. M., Chemistry of aerogels and their applications. Chem. Rev. 2002, 102 (11), 4243--4265.Google ScholarGoogle ScholarCross RefCross Ref
  5. Kistler, S. S., Nature 1931, 127, 741.Google ScholarGoogle Scholar
  6. Lucio-Arias, D.; Leydesdorff, L., Knowledge emergence in scientific communication: from "fullerenes" to "nanotubes". Scientometrics 2007, 70 (3), 603--632.Google ScholarGoogle Scholar
  7. Boyack, K. W.; Borner, K.; Klavans, R., Mapping the structure and evolution of chemistry research. Scientometrics 2009, 79 (1), 45--60.Google ScholarGoogle Scholar
  8. Chen, K. H.; Guan, J. C., A bibliometric investigation of research performance in emerging nanobiopharmaceuticals. Journal of Informetrics 2011, 5 (2), 233--247.Google ScholarGoogle Scholar
  9. Cobo, M. J.; Lopez-Herrera, A. G.; Herrera-Viedma, E.; Herrera, F., Science Mapping Software Tools: Review, Analysis, and Cooperative Study Among Tools. Journal of the American Society for Information Science and Technology 2011, 62 (7), 1382--1402. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Fang, Y. Q., Visualizing the structure and the evolving of digital medicine: a scientometrics review. Scientometrics 2015, 105 (1), 5--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hu, Y.; Sun, J.; Li, W. M.; Pan, Y. L., A scientometric study of global electric vehicle research. Scientometrics 2014, 98 (2), 1269--1282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chen, C. M., Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5303--5310.Google ScholarGoogle ScholarCross RefCross Ref
  13. Chen, C. M., CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology 2006, 57 (3), 359--377. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Wang, H.; Yuan, X. Z.; Zeng, G. M.; Wu, Y.; Liu, Y.; Jiang, Q.; Gu, S. S., Three dimensional graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation. Adv. Colloid Interface Sci. 2015, 221, 41--59.Google ScholarGoogle ScholarCross RefCross Ref
  15. Chen, B.; Ma, Q. L.; Tan, C. L.; Lim, T. T.; Huang, L.; Zhang, H., Carbon-Based Sorbents with Three-Dimensional Architectures for Water Remediation. Small 2015, 11 (27), 3319--3336.Google ScholarGoogle Scholar
  16. Xu, L. M.; Xiao, G. Y.; Chen, C. B.; Li, R.; Mai, Y. Y.; Sun, G. M.; Yan, D. Y., Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction. J. Mater. Chem. A 2015, 3 (14), 7498--7504.Google ScholarGoogle Scholar
  17. Wang, J. C.; Kaskel, S., KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22 (45), 23710--23725.Google ScholarGoogle ScholarCross RefCross Ref
  18. Li, C.; Zhang, X.; Wang, K.; Zhang, H. T.; Sun, X. Z.; Ma, Y. W., Three dimensional graphene networks for supercapacitor electrode materials. New Carbon Mater. 2015, 30 (3), 193--206.Google ScholarGoogle ScholarCross RefCross Ref
  19. Golov, A.; Porto, J. V.; Geller, D. A.; Mulders, N.; Lawes, G. J.; Parpia, J. M., He-3 superfluidity in the presence of aerogel. Physica B 2000, 280 (1-4), 134--139.Google ScholarGoogle Scholar
  20. Feldman, D. E., Quasi-long-range order in nematics confined in random porous media. Phys. Rev. Lett. 2000, 84 (21), 4886--4889.Google ScholarGoogle ScholarCross RefCross Ref
  21. Kralj, S.; Zidansek, A.; Lahajnar, G.; Zumer, S.; Blinc, R., Influence of surface treatment on the smectic ordering within porous glass. Phys. Rev. E 2000, 62 (1), 718--725.Google ScholarGoogle Scholar
  22. Chen, W. S.; Yu, H. P.; Li, Q.; Liu, Y. X.; Li, J., Ultralight and highly flexible aerogels with long cellulose I nanofibers. Soft Matter 2011, 7 (21), 10360--10368.Google ScholarGoogle Scholar
  23. Anderson, M. A.; Cudero, A. L.; Palma, J., Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochim. Acta 2010, 55 (12), 3845--3856.Google ScholarGoogle Scholar
  24. da Cunha, J. P.; Neves, P.; Lopes, M. I., On the reconstruction of Cherenkov rings from aerogel radiators. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2000, 452 (3), 401--421.Google ScholarGoogle ScholarCross RefCross Ref
  25. Yoldas, B. E.; Annen, M. J.; Bostaph, J., Chemical engineering of aerogel morphology formed under nonsupercritical conditions for thermal insulation. Chem. Mat. 2000, 12 (8), 2475--2484.Google ScholarGoogle ScholarCross RefCross Ref
  26. Sandford, S. A.; Bajt, S.; Zolensky, M. E., Assessment and control of organic and other contaminants associated with the Stardust sample return from comet 81P/Wild 2. Meteorit. Planet. Sci. 2010, 45 (3), 406--433.Google ScholarGoogle ScholarCross RefCross Ref
  27. Schaefer, D. W., Structure of Random Porous Materials: Silica Aerogel. PHYS REV LETT 1986, 56, 2199.Google ScholarGoogle Scholar
  28. Chan, M. H. W., Disorder and the Superfluid Transition in Liquid 4He. PHYS REV LETT 1988, 61, 1950.Google ScholarGoogle Scholar
  29. Porto, J. V., Superfluid 3He in Aerogel. PHYS REV LETT 1995, 74, 4667.Google ScholarGoogle Scholar
  30. Pekala, R. W., Organic aerogels from the polycondensation of resorcinol with formaldehyde. J MATER SCI 1989, 24, 3221.Google ScholarGoogle Scholar
  31. Mayer, S. T., The aerocapacitor: an electrochemical double- layer energy-storage device. J ELECTROCHEM SOC 1993, 140, 446.Google ScholarGoogle Scholar
  32. Tillotson, T. M., Transparent ultralow-density silica aerogels by a two-step sol-gel process. J NON-CRYST SOLIDS 1992, 145, 44.Google ScholarGoogle Scholar
  33. Brinker, C. J., Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press; 1990.Google ScholarGoogle Scholar
  34. Husing, N., Aerogels-Airy Materials: Chemistry, Structure, and Properties. ANGEW CHEM INT EDIT 1998, 37, 22.Google ScholarGoogle Scholar
  35. Xu, Y. X., Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano 2010, 4, 4324.Google ScholarGoogle Scholar
  36. Sun, H. Y.; Xu, Z.; Gao, C., Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels. Adv. Mater. 2013, 25 (18), 2554--2560.Google ScholarGoogle Scholar
  37. Baetens, R.; Jelle, B. P.; Gustavsen, A., Aerogel insulation for building applications: A state-of-the-art review. Energy Build. 2011, 43 (4), 761--769.Google ScholarGoogle ScholarCross RefCross Ref
  38. Randall, J. P.; Meador, M. A. B.; Jana, S. C., Tailoring Mechanical Properties of Aerogels for Aerospace Applications. ACS Appl. Mater. Interfaces 2011, 3 (3), 613--626.Google ScholarGoogle Scholar
  39. Korhonen, J. T.; Kettunen, M.; Ras, R. H. A.; Ikkala, O., Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents. ACS Appl. Mater. Interfaces 2011, 3 (6), 1813--1816.Google ScholarGoogle Scholar
  40. Olsson, R. T.; Samir, M.; Salazar-Alvarez, G.; Belova, L.; Strom, V.; Berglund, L. A.; Ikkala, O.; Nogues, J.; Gedde, U. W., Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat. Nanotechnol. 2010, 5 (8), 584--588.Google ScholarGoogle ScholarCross RefCross Ref
  41. Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S., Carbon Materials for Chemical Capacitive Energy Storage. Adv. Mater. 2011, 23 (42), 4828--4850.Google ScholarGoogle ScholarCross RefCross Ref
  42. Hu, H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S., Ultralight and Highly Compressible Graphene Aerogels. Adv. Mater. 2013, 25 (15), 2219--2223.Google ScholarGoogle ScholarCross RefCross Ref
  43. Nardecchia, S.; Carriazo, D.; Ferrer, M. L.; Gutierrez, M. C.; del Monte, F., Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem. Soc. Rev. 2013, 42 (2), 794--830.Google ScholarGoogle ScholarCross RefCross Ref
  44. Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H., Carbon Nanotube Sponges. Adv. Mater. 2010, 22 (5), 617.Google ScholarGoogle ScholarCross RefCross Ref
  45. Wu, Z. S.; Sun, Y.; Tan, Y. Z.; Yang, S. B.; Feng, X. L.; Mullen, K., Three-Dimensional Graphene-Based Macro- and Mesoporous Frameworks for High-Performance Electrochemical Capacitive Energy Storage. J. Am. Chem. Soc. 2012, 134 (48), 19532--19535.Google ScholarGoogle ScholarCross RefCross Ref
  46. Wu, Z. Y.; Li, C.; Liang, H. W.; Chen, J. F.; Yu, S. H., Ultralight, Flexible, and Fire-Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose. Angew. Chem.-Int. Edit. 2013, 52 (10), 2925--2929.Google ScholarGoogle ScholarCross RefCross Ref
  47. Bi, H. C.; Xie, X.; Sun, L. T.; Ruoff, R. S., Spongy Graphene as a Highly Efficient and Recyclable Sorbent for Oils and Organic Solvents. Adv. Funct. Mater. 2012, 22 (21), 4421--4425.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A Scientometric Analysis of Aerogel Research in 1996-2015: Visualizing the Knowledge Domain and Emerging Trends

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      BDIOT '17: Proceedings of the International Conference on Big Data and Internet of Thing
      December 2017
      251 pages
      ISBN:9781450354301
      DOI:10.1145/3175684

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 20 December 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate75of136submissions,55%
    • Article Metrics

      • Downloads (Last 12 months)5
      • Downloads (Last 6 weeks)1

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader