skip to main content
10.1145/3186608.3186612acmotherconferencesArticle/Chapter ViewAbstractPublication PagesaistecsConference Proceedingsconference-collections
short-paper

Monolithic Optical Interconnects in Zero-Change CMOS

Authors Info & Claims
Published:22 January 2018Publication History

ABSTRACT

Here, I present recent device and system results on monolithic electronic-photonic platforms developed in partially-depleted SOI CMOS, in which photonic functions are implemented with 'zero change' to the fabrication process, and solely by way of design. This platform enables the integration of photonic components, analog and digital circuits, all on a single chip, to achieve the performance and scalability needed for optical interconnects with Terabits per second data rates for high performance computing and data center applications. The resonance-based transmitters and receivers enabled by on-chip mixed-signal resonance stabilization circuits, along with very small electrical parasitics offer high bandwidth densities and sub-pJ/bit on-chip link energy consumptions to achieve Tb/s-scale optical interconnects through WDM systems.

References

  1. M. S. Akhter, P. Somogyi, C. Sun, M. Wade, R. Meade, P. Bhargava, S. Lin, and N. Mehta. 2017. WaveLight: A Monolithic Low Latency Silicon-Photonics Communication Platform for the Next-Generation Disaggregated Cloud Data Centers. In 2017 IEEE 25th Annual Symposium on High-Performance Interconnects (HOTI). 25--28.Google ScholarGoogle Scholar
  2. L. Alloatti, D. Cheian, and R. J. Ram. 2016. High-speed modulator with interleaved junctions in zero-change CMOS photonics. Applied Physics Letters 108, 13 (2016), 131101.Google ScholarGoogle ScholarCross RefCross Ref
  3. L. Alloatti and R. J. Ram. 2016. Resonance-enhanced waveguide-coupled silicon-germanium detector. Applied Physics Letters 108, 7 (2016), 071105.Google ScholarGoogle ScholarCross RefCross Ref
  4. L. Alloatti, S. A. Srinivasan, J. S. Orcutt, and R. J. Ram. 2015. Waveguide-coupled detector in zero-change complementary metalâĂŞoxideâĂŞsemiconductor. Applied Physics Letters 107, 4 (2015), 041104.Google ScholarGoogle ScholarCross RefCross Ref
  5. Amir H. Atabaki, Huaiyu Meng, Luca Alloatti, Karan K. Mehta, and Rajeev J. Ram. 2016. High-speed polysilicon CMOS photodetector for telecom and datacom. Applied Physics Letters 109, 11 (2016), 111106.Google ScholarGoogle ScholarCross RefCross Ref
  6. A. Awny, R. Nagulapalli, G. Winzer, M. Kroh, D. Micusik, S. Lischke, D. Knoll, G. Fischer, D. Kissinger, A. ÃĞ. Ulusoy, and L. Zimmermann. 2015. A 40 Gb/s Monolithically Integrated Linear Photonic Receiver in a 0.25 murmm BiCMOS SiGe:C Technology. IEEE Microwave and Wireless Components Letters 25, 7 (July 2015), 469--471.Google ScholarGoogle ScholarCross RefCross Ref
  7. F. Boeuf, S. CrÃl'mer, E. Temporiti, M. FerÃÍ, M. Shaw, C. Baudot, N. Vulliet, T. Pinguet, A. Mekis, G. Masini, H. Petiton, P. Le Maitre, M. Traldi, and L. Maggi. 2016. Silicon Photonics R amp;D and Manufacturing on 300-mm Wafer Platform. Journal of Lightwave Technology 34, 2 (Jan 2016), 286--295.Google ScholarGoogle ScholarCross RefCross Ref
  8. C. R. Doerr, L. L. Buhl, Y. Baeyens, R. Aroca, S. Chandrasekhar, X. Liu, L. Chen, and Y. K. Chen. 2011. Packaged Monolithic Silicon 112-Gb/s Coherent Receiver. IEEE Photonics Technology Letters 23, 12 (June 2011), 762--764.Google ScholarGoogle ScholarCross RefCross Ref
  9. M. De Cea Falco, A. Atabaki 2, L. Alloatti 3, M. Wade 4, M. Popovic 5, and R. Ram. 2017. A Thin Silicon Photonic Platform for Telecommunication Wavelengths. In European Conference on Optical Communication (ECOC) 2017.Google ScholarGoogle Scholar
  10. D. M. Gill, C. Xiong, J. E. Proesel, J. C. Rosenberg, J. Orcutt, M. Khater, J. Ellis-Monaghan, A. Stricker, E. Kiewra, Y. Martin, Y. Vlasov, W. Haensch, and W. M. J. Green. 2016. Demonstration of Error-Free 32-Gb/s Operation From Monolithic CMOS Nanophotonic Transmitters. IEEE Photonics Technology Letters 28, 13 (July 2016), 1410--1413.Google ScholarGoogle ScholarCross RefCross Ref
  11. Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. StojanoviÄĞ, and K. AsanoviÄĞ. 2014. A 45nm 1.3GHz 16.7 double-precision GFLOPS/W RISC-V processor with vector accelerators. In ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC). 199--202.Google ScholarGoogle ScholarCross RefCross Ref
  12. J. Li, G. Li, X. Zheng, K. Raj, A. V. Krishnamoorthy, and J. F. Buckwalter. 2013. A 25-Gb/s Monolithic Optical Transmitter With Micro-Ring Modulator in 130-nm SoI CMOS. IEEE Photonics Technology Letters 25, 19 (Oct 2013), 1901--1903.Google ScholarGoogle ScholarCross RefCross Ref
  13. N. Mehta, C. Sun, M. Wade, S. Lin, M. Popovic, and V. Stojanovic. 2016. A 12Gb/s, 8.6 μA input sensitivity, monolithic-integrated fully differential optical receiver in CMOS 45nm SOI process. In ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference. 491--494.Google ScholarGoogle Scholar
  14. S. Moazeni, A. Atabaki, D. Cheian, S. Lin, R. J. Ram, and V. Stojanovic. 2017. Monolithic integration of O-band photonic transceivers in a 'zero-change' 32nm SOI CMOS. In 2017 IEEE International Electron Devices Meeting (IEDM). 24.3.1--24.3.4.Google ScholarGoogle Scholar
  15. S. Moazeni, S. Lin, M. T. Wade, L. Alloatti, R. J. Ram, M. A. Popovic, and V. Stojanovic. 2017. 29.3 A 40Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45nm SOI CMOS. In 2017 IEEE International Solid-State Circuits Conference (ISSCC). 486--487.Google ScholarGoogle Scholar
  16. Jelena Notaros and Milos Popović. 2015. Band-Structure Approach to Synthesis of Grating Couplers with Ultra-High Coupling Efficiency and Directivity, In Optical Fiber Communication Conference. Optical Fiber Communication Conference, Th3F.2.Google ScholarGoogle ScholarCross RefCross Ref
  17. Jason Orcutt, Douglas M. Gill, Jonathan E. Proesel, John Ellis-Monaghan, Folkert Horst, Tymon Barwicz, Chi Xiong, Frederick G. Anderson, Ankur Agrawal, Yves Martin, Christian W. Baks, Marwan Khater, Jessie C. Rosenberg, Wesley D. Sacher, Jens Hofrichter, Edward Kiewra, Andreas D. Stricker, Frank Libsch, Bert Jan Offrein, Mounir Meghelli, Natalie B. Feilchenfeld, Wilfried Haensch, and William M. Green. 2016. Monolithic Silicon Photonics at 25Gb/s, In Optical Fiber Communication Conference. Optical Fiber Communication Conference, Th4H.1.Google ScholarGoogle Scholar
  18. D. Petousi, P. Rito, S. Lischke, D. Knoll, I. Garcia-Lopez, M. Kroh, R. Barth, C. Mai, A. C. Ulusoy, A. Peczek, G. Winzer, K. Voigt, D. Kissinger, K. Petermann, and L. Zimmermann. 2016. Monolithically Integrated High-Extinction-Ratio MZM With a Segmented Driver in Photonic BiCMOS. IEEE Photonics Technology Letters 28, 24 (Dec 2016), 2866--2869.Google ScholarGoogle ScholarCross RefCross Ref
  19. C. Sun, M. Wade, M. Georgas, S. Lin, L. Alloatti, B. Moss, R. Kumar, A. H. Atabaki, F. Pavanello, J. M. Shainline, J. S. Orcutt, R. J. Ram, M. PopoviÄĞ, and V. StojanoviÄĞ. 2016. A 45 nm CMOS-SOI Monolithic Photonics Platform With Bit-Statistics-Based Resonant Microring Thermal Tuning. IEEE Journal of Solid-State Circuits 51, 4 (April 2016), 893--907.Google ScholarGoogle ScholarCross RefCross Ref
  20. Chen Sun, Mark T. Wade, Yunsup Lee, Jason S. Orcutt, Luca Alloatti, Michael S. Georgas, Andrew S. Waterman, Jeffrey M. Shainline, Rimas R. Avizienis, Sen Lin, Benjamin R. Moss, Rajesh Kumar, Fabio Pavanello, Amir H. Atabaki, Henry M. Cook, Albert J. Ou, Jonathan C. Leu, Yu-Hsin Chen, Krste Asanovic, Rajeev J. Ram, Milos A. Popovic, and Vladimir M. Stojanovic. 2015. Single-chip microprocessor that communicates directly using light. Nature 528 (23 Dec 2015), 534 EP --.Google ScholarGoogle Scholar
  21. M. A. Taubenblatt. 2012. Optical Interconnects for High-Performance Computing. Journal of Lightwave Technology 30, 4 (Feb 2012), 448--457.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Monolithic Optical Interconnects in Zero-Change CMOS

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        AISTECS '18: Proceedings of the 3rd International Workshop on Advanced Interconnect Solutions and Technologies for Emerging Computing Systems
        January 2018
        20 pages
        ISBN:9781450364430
        DOI:10.1145/3186608

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 January 2018

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • short-paper
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate7of8submissions,88%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader