skip to main content
research-article

Editing Fluid Animation Using Flow Interpolation

Published:14 September 2018Publication History
Skip Abstract Section

Abstract

The computational cost for creating realistic fluid animations by numerical simulation is generally expensive. In digital production environments, existing precomputed fluid animations are often reused for different scenes in order to reduce the cost of creating scenes containing fluids. However, applying the same animation to different scenes often produces unacceptable results, so the animation needs to be edited. In order to help animators with the editing process, we develop a novel method for synthesizing the desired fluid animations by combining existing flow data. Our system allows the user to place flows at desired positions and combine them. We do this by interpolating velocities at the boundaries between the flows. The interpolation is formulated as a minimization problem of an energy function, which is designed to take into account the inviscid, incompressible Navier-Stokes equations. Our method focuses on smoke simulations defined on a uniform grid. We demonstrate the potential of our method by showing a set of examples, including a large-scale sandstorm created from a few flow data simulated in a small-scale space.

Skip Supplemental Material Section

Supplemental Material

a173-sato.mp4

mp4

267.8 MB

References

  1. R. Ando, N. Thuerey, and C. Wojtan. 2015. A stream function solver for liquid simulations. ACM Transactions on Graphics 34, 4 (2015), Article 53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. H. Bhattacharya, M. B. Nielsen, and R. Bridson. 2012. Steady state stokes flow interpolation for fluid control. In Short Paper Proceedings of Eurographics 2012. 57--60.Google ScholarGoogle Scholar
  3. M. Bojsen-Hansen and C. Wojtan. 2016. Generalized non-reflecting boundaries for fluid re-simulation. ACM Transactions on Graphics 35, 4 (2016), Article 96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. Bridson. 2015. Fluid Simulation for Computer Graphics. CRC Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. Fattal and D. Lischinski. 2004. Target-driven smoke animation. ACM Transactions on Graphics 23, 3 (2004), 439--446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. R. Fedkiw, J. Stam, and H. W. Jansen. 2001. Visual simulation of smoke. In Proceedings of ACM SIGGRAPH 2001. 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. B. E. Feldman, J. F. O’Brien, and O. Arikan. 2003. Animating suspended particle explosions. In Proceedings of ACM SIGGRAPH 2003. 708--715. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Fisher, P. Schroder, M. Desbrun, and H. Hoppe. 2007. Design of tangent vector fields. ACM Transactions on Graphics 26, 3 (2007), Article 56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. N. Foster and R. Fedkiw. 2001. Practical animation of liquids. In Proceedings of ACM SIGGRAPH 2001. 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. N. Foster and D. Metaxas. 1996. Realistic animation of liquids. Graphical Models and Image Processing 58, 5 (1996), 471--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. R. Huang, Z. Melek, and J. Keyser. 2011. Preview-based sampling for controlling gaseous simulations. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 177--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. W. Jakob. 2010. Mitsuba renderer. Retrieved from http://www.mitsuba-renderer.org.Google ScholarGoogle Scholar
  13. O. Jamriska, J. Fiser, P. Asente, J. Lu, E. Shechtman, and D. Sykora. 2015. LazyFluids: Appearance transfer for fluid animations. ACM Transactions on Graphics 34, 4 (2015), Article 92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. T. Kim and J. Delaney. 2013. Subspace fluid re-simulation. ACM Transactions on Graphics 32, 4 (2013), Article 62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick. 2003. Graphcut textures: Image and video synthesis using graph cuts. ACM Transactions on Graphics 22, 3 (2003), 277--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. McNamara, A. Treuille, Z. Popovic, and J. Stam. 2004. Fluid control using the adjoint method. ACM Transactions on Graphics 23, 3 (2004), 449--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. R. Miyazaki, Y. Dobashi, and T. Nishita. 2002. Simulation of cumuliform clouds based on computational fluid dynamics. In Proceedings of EUROGRAPHICS 2002 Short Presentations. 405--410.Google ScholarGoogle Scholar
  18. D. Q. Nguyen, R. Fedkiw, and H. W. Jensen. 2002. Physically based modeling and animation of fire. ACM Transactions on Graphics 21, 3 (2002), 721--728. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. B. Nielsen and B. B. Christensen. 2010. Improved variational guiding of smoke animations. Computer Graphics Forum 29, 2 (2010), 705--712.Google ScholarGoogle ScholarCross RefCross Ref
  20. M. B. Nielsen, B. B. Christensen, N. Bin Zafar, D. Roble, and K. Museth. 2009. Guiding of smoke animations through variational coupling of simulations at different resolutions. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 217--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Z. Pan, J. Huang, Y. Tong, C. Zheng, and H. Bao. 2013. Interactive localized liquid motion editing. ACM Transactions on Graphics 32, 6 (2013), Article 184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. P. Perez, M. Gangnet, and A. Blake. 2003. Poisson image editing. ACM Transactions on Graphics 22, 3 (2003), 313--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. K. Raveendran, C. Wojtan, N. Thuerey, and G. Turk. 2014. Blending liquids. ACM Transactions on Graphics 33, 4 (2014), Article 137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Rubinstein, A. Shamir, and S. Avidan. 2008. Improved seam carving for video retargeting. ACM Transactions on Graphics 27, 3 (2008), Article 16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Sato, Y. Dobashi, and T. Nishita. 2016. A combining method of fluid animations by interpolating flow fields. In Proceedings of SIGGRAPH Asia 2016 Technical Briefs. Article 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. Sato, Y. Dobashi, Y. Yue, K. Iwasaki, and T. Nishita. 2015. Incompressibility-preserving deformation for fluid flows using vector potentials. Visual Computer 31, 6 (2015), 959--965. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. Stam. 1999. Stable fluids. In Proceedings of ACM SIGGRAPH 1999, Annual Conference Series. 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. N. Thuerey. 2016. Interpolations of smoke and liquid simulations. ACM Transactions on Graphics 36, 1 (2016), Article 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. N. Thürey, R. Keiser, M. Pauly, and U. Rüde. 2006. Detail-preserving fluid control. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 7--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. A. Treuille, A. McNamara, Z. Popovic, and J. Stam. 2003. Keyframe control of smoke simulations. ACM Transactions on Graphics 22, 3 (2003), 716--723. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. K. Wang, Weiwei, Y. Tong, M. Desbrun, and P. Schröder. 2006. Edge subdivision schemes and the construction of smooth vector fields. ACM Transactions on Graphics 25, 3 (2006), 1041--1048. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. G. D. Yngve, J. F. O’Brien, and J. K. Hodgins. 2000. Animating explosions. In Proceedings of ACM SIGGRAPH 2000. 29--36. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Editing Fluid Animation Using Flow Interpolation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 37, Issue 5
      October 2018
      140 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3278329
      Issue’s Table of Contents

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 14 September 2018
      • Revised: 1 April 2018
      • Accepted: 1 April 2018
      • Received: 1 July 2017
      Published in tog Volume 37, Issue 5

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format